NUMERICAL ANALYSIS II
FINAL EXAM - SPRING 2003

Show your work/steps.

Name ________________

Part 1. General questions. (60 pts)

In Part 1 indicate agree (X) or disagree (O) in blanc spaces ().

If you are given a system of linear equations, what methods can you use (choose all appropriate methods):

() Jacobi iterative method
() Gaussian elimination with pivoting
() Shooting Method
() Euler’s method
() finite differences
() The Adams Families
() Trapezoid Predictor - Corrector

Pivoting can be used

() for LU decomposition
() to solve a linear system \(Ax = b\) with \(\det(A) \neq 0\)
() to solve a linear system \(Ax = b\) with \(\det(A) = 0\)
() to avoid division by zero
() to increase an accuracy
() as a step of Runge-Kutta method

The accuracy of numerical solution to the linear system of equations is higher if

() the condition number of the system is a large number
() the condition number of the system is a small number
() the condition number of the system is zero
() the condition number of the system is a positive number less than 1
() the condition number of the system is a negative number
() the accuracy of numerical solution to the linear system of equations does not depend on the condition number
() The accuracy of second-order Runge-Kutta methods is less than the accuracy of Euler’s method

() If the coefficient matrix is very large and sparse, then Gaussian elimination is the best way to solve the linear system problem

() Runge-Kutta methods are single-step

() Adams-Bashforth methods require either the solution of a nonlinear equation or a predictor-corrector scheme

() The second-order Adams-Moulton method is the trapezoid method

() The Runge-Kutta methods can be used to generate starting values for Adams methods
Part 2. Problems.

1. (30 pts) Let

\[
A = \begin{pmatrix}
2 & 3 & 1 \\
0 & 1 & 2 \\
1 & 1 & 4
\end{pmatrix}
\]

Compute, directly from the definition, \(\text{cond}_\infty(A) \).
2. (30 pts) Beginning with $x_0 = 1$, write the first three iterations of Newton’s method for the equation $x^3 + x = 1$.
3. (40 pts) (a) Given

\[y' = f(t, y(t)), \quad y(t_0) = y_0, \quad t_0 \leq t \leq T, \quad (1) \]

write down the general form of second-order Runge-Kutta methods for solving (1).

(b) What conditions on the parameters will guarantee the accuracy of order two over the interval \([t_0, T]\)?

(c) Write down Runge-Kutta method of order two that corresponds to \(c_2 = \frac{1}{2}\). Identify this method.
(d) Use the method obtained in part (c) to solve the following system of ODEs:
\[y_1' = -4y_1 - 2y_2 + \cos t, \quad y_1(0) = 0, \]
\[y_2' = 3y_1 + y_2, \quad y_2(0) = -1, \]
on [0, 1] with \(h = \frac{1}{3} \).

(e) Summarize your results in the table:

<table>
<thead>
<tr>
<th>RK2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1/3</td>
</tr>
<tr>
<td>2/3</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>