SURVEY OF CALCULUS - EXAM I

Name _______________________

(5 pts) In the table below, the amount of the U.S. minimum wage is listed for selected years.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WAGE</td>
<td>$1.15</td>
<td>$1.40</td>
<td>$2.00</td>
<td>$3.10</td>
<td>$3.35</td>
<td>$3.80</td>
<td>$4.25</td>
<td>$4.75</td>
<td>$5.15</td>
</tr>
</tbody>
</table>

Find an exponential regression model of the form \(y = a \cdot b^x \), where \(y \) represents the U.S. minimum wage \(x \) years after 1960. Round \(a \) and \(b \) to four decimal places. Graph the model. According to this model, what will the minimum wage be in 2005? In 2010?

\[
y = a \cdot b^x
\]

\[
a = 1.1538
\]

\[
b = 1.0425
\]

$7.51 in 2005

$9.25 in 2010

(5 pts) Let \(f(x) = \frac{x^2 - 3x - 10}{x+2} \). Find \(\lim_{x \to -2} f(x) \).

\[
\lim_{x \to -2} \frac{x^2 - 3x - 10}{x+2} = \frac{4 + 6 - 10}{-2 + 2} = \frac{0}{0}
\]

\[
= \lim_{x \to -2} \frac{(x+2)(x-5)}{(x+2)} = \lim_{x \to -2} (x-5) = -7
\]
(5 pts) If $4,000$ is invested at 7% compounded annually, how long will it take for it to grow to $6,000$, assuming no withdrawals are made? Compute answer to the next higher year if not exact.

$$A = P \left(1 + \frac{r}{m}\right)^{mt}$$

$r = 0.07, \ m = 1, \ P = 4,000, \ A = 6,000$

$$6,000 = 4,000 \left(1 + \frac{0.07}{1}\right)^{t} = 4,000 \cdot 1.07^t$$

$$\frac{3}{2} = 1.07^t$$

$$\ln \frac{3}{2} = t \ln 1.07$$

$$t = \frac{\ln 3 - \ln 2}{\ln 1.07} = 5.9928 \ldots$$

6 years

(5 pts) Evaluate the following limits

(A) $$\lim_{x \to 5} \frac{x - 5}{|x - 5|}$$

$$\lim_{x \to 5} \frac{x - 5}{|x - 5|} = \begin{cases} 1, & x > 5 \\ -1, & x < 5 \end{cases}$$

(B) $$\lim_{x \to 5} \frac{x - 5}{|x - 5|}$$

$$\lim_{x \to 5} \frac{x - 5}{|x - 5|} = \lim_{x \to 5^+} \frac{x - 5}{|x - 5|}$$

$$\lim_{x \to 5^+} \frac{x - 5}{|x - 5|} = 1$$

(C) $$\lim_{x \to 5} \frac{x - 5}{|x - 5|}$$

$$\lim_{x \to 5} \frac{x - 5}{|x - 5|} = \lim_{x \to 5^-} \frac{x - 5}{|x - 5|}$$

$$\lim_{x \to 5^-} \frac{x - 5}{|x - 5|} = -1$$

$$\lim_{x \to 5} \frac{x - 5}{|x - 5|} = \text{DNE}$$
(5 pts) A company is planning to manufacture a new blender. After conducting extensive market surveys, the research department estimates a weekly demand of 600 blenders at a price of $50 per blender and a weekly demand of 800 blenders at a price of $40 per blender. Assuming the demand equation is linear, use the research department’s estimates to find the revenue equation in terms of the demand x.

\[
\begin{array}{c|c}
x & p \\
600 & 50 \\
800 & 40 \\
\end{array}
\]

\[
p(x) = a + bx
\]

\[
\begin{cases}
50 = 0 + b \cdot 600 \\
40 = a + b \cdot 800 \\
\end{cases}
\]

\[
a = 50 - 600b \\ 40 = 50 - 600b + 800b \\
-10 = 200b, \quad b = -\frac{10}{200} = -0.05 \\
a = 50 + 600 \cdot 0.05 = 50 + 30 = 80
\]

\[
p(x) = 80 - 0.05x \quad \Rightarrow \quad R(x) = x \cdot p(x) = 80x - 0.05x^2
\]

(5 pts) Solve the inequality and express the answer in interval notation:

\[
x + 5 = 0 \\
x = -5
\]

\[
f(x) = \frac{x^2 - 4x}{x + 5} > 0.
\]

\[
x^2 - 4x = 0 \\
x = 0 \quad x_2 = 4
\]

\[
\begin{array}{c|c|c|c}
- & -5 & + & 0 & - & 4 & + & >
\end{array}
\]

\[
f(-6) = \frac{-6(-6-4)}{-6+5} = + < 0
\]

\[
f(1) = \frac{1(1-4)}{1+5} = + < 0
\]

\[
f(-1) = \frac{-1(-1-4)}{-1+5} = + > 0
\]

\[
f(5) = \frac{5(5-4)}{5+5} = + > 0
\]

Answer: \((-5, 0) \cup (4, \infty)\)
(5 pts) Find \(\frac{df}{dx} \left[\frac{1}{x^4} - 3\sqrt{x} \right] \).

\[
f'(x) = 4(x^{-4})' - 5\left(x^{\frac{1}{3}}\right)' = 4\left(-4x^{-5}\right) - 5\left(\frac{1}{3}x^{-\frac{2}{3}}\right)
= -\frac{16}{x^5} - \frac{5}{3} \frac{3}{x^2}
\]

(5 pts) The market research department of a company recommends that the company manufacture steam irons. After suitable test marketing, the research department presents the demand equation \(p(x) = 20 - \frac{x}{50} \), where \(x \) is the number of irons retailers are likely to buy per week at $p. The financial department provides the cost equation \(C(x) = 3,600 + 2x \), where $3,600 is the estimated fixed costs and $2 is the estimated variable costs. Use the graph of the revenue and cost equations to find the break-even points.

\[
p(x) = 20 - \frac{x}{50} = \implies R(x) = xP(x) = 20x - \frac{x^2}{50}
\]

\[
C(x) = 3,600 + 2x
\]

\[
x(20 - \frac{x}{50}) = 0 \implies x = 0, x = 1000
\]

\[
(300, 4200)
(600, 4800)
\]

\[
R(500) = R_{max} = 500(20 - \frac{500}{50}) = 5000
\]

\[
C(0) = 3,600; C(1000) = 3,600 + 2000 = 5,600
\]

Break-even pts: \(C(x) - R(x) \)

\[
3600 + 2x = 20x - \frac{x^2}{50} \implies \frac{x^2}{50} - 18x + 3600 = 0
\]

\[
x^2 - 900x + 180000 = 0
\]