Consider a bond that has face (or par or maturity) value of M, with T periods to maturity. If the coupon rate of interest is r per period, then $C = rM$ is the coupon interest paid per period.
Let y denote the yield to maturity of the bond (YTM) and let P be the current price of the bond. By definition, the YTM y solves the equation

$$P = \sum_{t=1}^{T} \frac{C}{(1+y)^t} + \frac{M}{(1+y)^T}.$$

This is equation (3.4) on page 37 in (F) (we use T for the number of
periods, while Fabozzi frequently uses n).

We want to establish the relationship between P and M that reflects the relationship between r and y.

SPECIAL CASE $(r = y)$. If $r = y$, then $P = M$. To see this, suppose that $T = 1$. Then paying P now for the bond entitles you to the face value M in one
period plus interest of C for one period. So the cash flow in one period is $M + C$. Recognizing that $C = rM$ and $y = r$, we get that

$$P = \frac{M+C}{1+y} = \frac{M+rM}{1+r} = M.$$

Thus the claim is valid for $T = 1$.

Suppose now that $T = 2$. The cash flow at maturity is again $M + C$ and its present value one period before maturity is M, as we have just seen.
Thus one period from now the bond will pay interest of C and will have cash flows worth M. Again we have cash flow worth $M + C$ in one period. Present valuing this at $y = r$ again gives M. Thus the claim is valid for $T = 2$.

Suppose that $T = 3$. In one period we will have an interest payment of C and we will own a bond with two
periods to maturity. That bond will be worth \(M \) if \(y = r \) as we have just seen. Thus we will have cash flows worth \(M + C \) in one period. The present value of these cash flows now when \(y = r \) is \(M \) as demonstrated above. This same argument now applies for any value of \(T \) and hence the claim that \(P = M \) when \(r = y \) is true for any value of \(T \).
There is a pleasant consequence of this result, namely the formula for the value of an ordinary annuity. Let $PVAF(r, T)$ (present value annuity factor) denote the value of an ordinary annuity of $1.00 per period for T periods at interest rate r. Then $rMPVAF(r, T)$ is the present value of the interest on a bond with coupon
interest rate of r, yield to maturity $y = r$, and face value of M. We know that the value of such a bond now must be $P = M$. Thus

$$r \text{MPVAF}(r, T) + \frac{M}{(1+r)^T} = M.$$

Dividing through by M, we get that

$$r \text{PVAF}(r, T) + \frac{1}{(1+r)^T} = 1.$$

Solving for $\text{PVAF}(r, T)$ gives
PVAF(r, T) = \frac{1 - \frac{1}{(1+r)^T}}{r},

which is the formula (2.5), page 18 in (F).

GENERAL CASE. We now use this formula to establish the relationship for general r and y. For a T period bond with coupon rate r, face value of M, and yield y, the interest coupon $C = rM$ is a T period ordinary annuity
whose present value is CPVAF(y, T).

Substituting this into the pricing equation gives,

\[
P = \text{CPVAF}(y, T) + \frac{M}{(1+y)^T}
\]

\[
= C \left(\frac{1 - \frac{1}{(1+y)^T}}{y} \right) + \frac{M}{(1+y)^T}
\]

\[
= rM \left(\frac{1 - \frac{1}{(1+y)^T}}{y} \right) + \frac{M}{(1+y)^T}
\]
\[M \left[\frac{r}{y} \left(1 - \frac{1}{(1+y)^T} \right) + \frac{1}{(1+y)^T} \right] \]
\[= M s, \]

where \(s = \left[\frac{r}{y} \left(1 - \frac{1}{(1+y)^T} \right) + \frac{1}{(1+y)^T} \right] \). Note that the second equality above is equation (4.9) page 64 in (F) for \(M = 100 \).
Let \(q = \frac{1}{(1+y)^T} \). Then clearly

\[0 < q < 1, \]

and we have that \(s = q \cdot 1 + (1-q) \frac{r}{y} \). Thus if \(r > y \), then \(s > 1 \), and \(P = Ms > M \), i.e., the bond is selling at a premium to par. If \(r < y \), then \(s < 1 \), and \(P = Ms < M \), i.e., the bond is selling at a discount to par. Finally, if \(r = y \), then \(s = 1 \), and \(P = Ms = M \), i.e., the bond is selling at
par, as we demonstrated above in the SPECIAL CASE.