The quasitopological fundamental group and the first shape map

Jeremy Brazas

28th Summer Conference on Topology and Its Applications
North Bay, Ontario, Canada

July 26, 2013
Introduction

Joint with Paul Fabel.

Joint with Paul Fabel.

The fundamental group $\pi_1(X, x_0)$ of a Peano continuum $X, x_0 \in X$ is either

- finitely presented (when X has a universal covering)
- or uncountable (when X does not have a universal covering)
The fundamental group $\pi_1(X, x_0)$ of a Peano continuum X, $x_0 \in X$ is either

- finitely presented (when X has a universal covering)
- or uncountable (when X does not have a universal covering)

Motivation/Application:
- Distinguish homotopy types
The fundamental group \(\pi_1(X, x_0) \) of a Peano continuum \(X \), \(x_0 \in X \) is either

- finitely presented (when \(X \) has a universal covering)
 - or uncountable (when \(X \) does not have a universal covering)

Motivation/Application:

- Distinguish homotopy types
- Provides new direction for combinatorial theory of infinitely generated groups, i.e. slender/n-slender/n-cotorsion free groups (Eda, Fischer)
The fundamental group of a Peano continuum $\pi_1(X, x_0)$ of a Peano continuum X, $x_0 \in X$ is either

- finitely presented (when X has a universal covering)
- or uncountable (when X does not have a universal covering)

Motivation/Application:

- Distinguish homotopy types
- Provides new direction for combinatorial theory of infinitely generated groups, i.e. slender/n-slender/n-cotorsion free groups (Eda, Fischer)
- Natural topologies on homotopical invariants provide (wild) geometric models for objects in topological algebra.
The Hawaiian earring \mathbb{H}
The Hawaiian earring \mathbb{H}

The homomorphisms $\pi_1(\mathbb{H}, 0) \to \pi_1\left(\bigvee_{i=1}^n S^1, 0\right) = F(x_1, \ldots, x_n)$ induce a canonical homomorphism

$$\Psi : \pi_1(\mathbb{H}, 0) \to \lim_{\leftarrow \atop n} F(x_1, \ldots, x_n)$$
The Hawaiian earring \mathbb{H}

The homomorphisms $\pi_1(\mathbb{H}, 0) \to \pi_1\left(\bigvee_{i=1}^n S^1, 0\right) = F(x_1, \ldots, x_n)$ induce a canonical homomorphism

$$\Psi : \pi_1(\mathbb{H}, 0) \to \lim_{\leftarrow n} F(x_1, \ldots, x_n)$$

Theorem (Griffiths, Morgan, Morrison): $\ker \Psi = 1$ so Ψ is injective.
The homomorphisms \(\pi_1(\mathbb{H}, 0) \to \pi_1 \left(\bigvee_{i=1}^n S^1, 0 \right) = F(x_1, ..., x_n) \) induce a canonical homomorphism

\[
\Psi : \pi_1(\mathbb{H}, 0) \to \lim_{\leftarrow n} F(x_1, ..., x_n)
\]

Theorem (Griffiths, Morgan, Morrison): \(\ker \Psi = 1 \) so \(\Psi \) is injective. An element in \(\pi_1(\mathbb{H}, 0) = \text{Im}(\Psi) \) is a sequence \((w_1, w_2, ...) \) where \(w_n \in F(x_1, ..., x_n) \) and for every fixed generator \(x_i \) the number of times \(x_i \) appears in \(w_n \) is eventually constant.
The Čech expansion

Choose a finite open cover \mathcal{U}_n of X consisting of path connected open balls U with $diam(U) < \frac{1}{n}$ such that $\mathcal{U}_{n+1} \succeq \mathcal{U}_n$ (refinement).
The Čech expansion

Choose a finite open cover \mathcal{U}_n of X consisting of path connected open balls U with $diam(U) < \frac{1}{n}$ such that $\mathcal{U}_{n+1} \supseteq \mathcal{U}_n$ (refinement). Let $X_n = N(\mathcal{U}_n)$ be the nerve of \mathcal{U}_n.
Choose a finite open cover \mathscr{U}_n of X consisting of path connected open balls U with $\text{diam}(U) < \frac{1}{n}$ such that $\mathscr{U}_{n+1} \supseteq \mathscr{U}_n$ (refinement). Let $X_n = N(\mathscr{U}_n)$ be the nerve of \mathscr{U}_n.

Refinement gives an inverse sequence of polyhedra

$$
\cdots \longrightarrow X_{n+1} \xrightarrow{p_{n+1,n}} X_n \xrightarrow{p_{n,n-1}} \cdots \longrightarrow X_2 \xrightarrow{p_{2,1}} X_1
$$
The fundamental pro-group

The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.
The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\tilde{\pi}_1(X, x_0) = \limleftarrow(\pi_1(X_n, x_n), (p_{n+1,n})_*)$.
The fundamental pro-group

The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.

The first shape homotopy group is \(\tilde{\pi}_1(X, x_0) = \lim left(\pi_1(X_n, x_n), (p_{n+1,n})_* right)\).

Using partitions of unity, construct canonical maps \(p_n : X \rightarrow X_n\) such that \(p_{n+1,n} \circ p_{n+1} \simeq p_n\).
The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.

The first shape homotopy group is \(\tilde{\pi}_1(X, x_0) = \lim\leftarrow (\pi_1(X_n, x_n), (p_{n+1,n})_*\right).\)

Using partitions of unity, construct canonical maps \(p_n : X \to X_n\) such that \(p_{n+1,n} \circ p_{n+1} \simeq p_n\).
The fundamental pro-group

The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.

The first shape homotopy group is \(\tilde{\pi}_1(X, x_0) = \limleftarrow(\pi_1(X_n, x_n), (p_{n+1,n})_*).\)

Using partitions of unity, construct canonical maps \(p_n : X \to X_n\) such that \(p_{n+1,n} \circ p_{n+1} \simeq p_n\)

\[
\begin{array}{cccc}
\pi_1(X_n, x_n) & \xrightarrow{(p_n)_*} & \pi_1(X, x_0) & \xrightarrow{(p_1)_*} \\
\xleftarrow{(p_{n+1,n})_*} & & \xleftarrow{(p_2)_*} & \\
\cdots & \xrightarrow{(p_{n+1,n})_*} & \cdots & \xrightarrow{(p_2,1)_*} \\
& & & \pi_1(X_1, x_1) \\
\end{array}
\]

The first shape homomorphism is the canonical homomorphism \(\psi : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0).\)
The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.

The first shape homotopy group is \(\tilde{\pi}_1(X, x_0) = \lim_{\leftarrow}(\pi_1(X_n, x_n), (p_{n+1,n})_*).\)

Using partitions of unity, construct canonical maps \(p_n : X \to X_n\) such that \(p_{n+1,n} \circ p_{n+1} \simeq p_n\)

The first shape homomorphism is the canonical homomorphism \(\psi : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0)\).

If \(\ker \psi = 1\), we say \(X\) is \(\pi_1\)-shape injective.
The fundamental pro-group

The fundamental pro-group is the inverse sequence \((\pi_1(X_n, x_n), (p_{n+1,n})_*)\) of finitely generated groups.

The first shape homotopy group is \(\tilde{\pi}_1(X, x_0) = \lim\left(\pi_1(X_n, x_n), (p_{n+1,n})_*\right)\).

Using partitions of unity, construct canonical maps \(p_n : X \to X_n\) such that \(p_{n+1,n} \circ p_{n+1} \simeq p_n\).

The first shape homomorphism is the canonical homomorphism \(\Psi : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0)\).

If \(\text{ker } \Psi = 1\), we say \(X\) is \(\pi_1\)-shape injective. e.g. 1-dimensional, planar Peano continua.
The quasitopological fundamental group $\pi_{1}^{qtop}(X, x_{0})$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_{0}) \to \pi_{1}(X, x_{0})$, $\alpha \to [\alpha]$.

- Discrete iff X admits a universal covering (Fabel).
- $\pi_{1}^{qtop}(X, x_{0})$ can fail to be a topological group, e.g. $\mathbb{I}H$ (Fabel).
- $\pi_{1}^{qtop}(X, x_{0})$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_{1}(X, x_{0})$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).
The quasitopological fundamental group $\pi_1^{qtop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \to \pi_1(X, x_0)$, $\alpha \to [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. $\mathbb{I} \mathbb{H}$ (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_1(X, x_0)$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).
The quasitopological fundamental group \(\pi_{1}^{qtop}(X, x_0) \) is the usual fundamental group endowed with the quotient topology w.r.t. \(\Omega(X, x_0) \to \pi_1(X, x_0) \), \(\alpha \to [\alpha] \).

- Discrete iff \(X \) admits a universal covering (Fabel)
- \(\pi_{1}^{qtop}(X, x_0) \) can fail to be a topological group, e.g. \(\mathbb{I} \) (Fabel).
- \(\pi_{1}^{qtop}(X, x_0) \) is a quasitopological group.
- A necessary intermediate for a group topology on \(\pi_1(X, x_0) \) which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).
The quasitopological fundamental group \(\pi_{1}^{\text{qtop}}(X, x_{0}) \) is the usual fundamental group endowed with the quotient topology w.r.t. \(\Omega(X, x_{0}) \to \pi_{1}(X, x_{0}) \), \(\alpha \to [\alpha] \).

- Discrete iff \(X \) admits a universal covering (Fabel)
- \(\pi_{1}^{\text{qtop}}(X, x_{0}) \) can fail to be a topological group, e.g. \(\mathbb{I} \) (Fabel).
- \(\pi_{1}^{\text{qtop}}(X, x_{0}) \) is a quasitopological group.
- A necessary intermediate for a group topology on \(\pi_{1}(X, x_{0}) \) which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).
The quasitopological fundamental group $\pi_{1}^{qtop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \to \pi_1(X, x_0)$, $\alpha \to [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- $\pi_{1}^{qtop}(X, x_0)$ can fail to be a topological group, e.g. \mathbb{I} (Fabel).
- $\pi_{1}^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_1(X, x_0)$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).
Topologizing π_1
Topologizing π_1

Guiding principle: If $\alpha_n \to \alpha$ in $\Omega(X, x_0)$, then $[\alpha_n] \to [\alpha]$ in $\pi_1^{qtop}(X, x_0)$.
Open subgroups and invariant separation

We consider separation axioms and other separation properties.
We consider separation axioms and other separation properties.

Definition: A space A is **totally separated** if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Remark: G is invariantly separated $\iff \bigcap N = 1.$ invariantly separated \Rightarrow totally separated \Rightarrow Hausdorff.
We consider separation axioms and other separation properties.

Definition: A space A is **totally separated** if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Definition: A quasitopological group G is **invariantly separated** if whenever $g \neq h$, there is an open normal subgroup $N \subset G$ such that $gN \neq hN$.

Remark: G is invariantly separated $\iff \bigcap N = 1$.

Invariantly separated \Rightarrow totally separated \Rightarrow Hausdorff
We consider separation axioms and other separation properties.

Definition: A space A is **totally separated** if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Definition: A quasitopological group G is **invariantly separated** if whenever $g \neq h$, there is an open normal subgroup $N \subset G$ such that $gN \neq hN$.

Remark: G is invariantly separated $\iff \bigcap_{N \leq G \text{ open}} N = 1$.

invariantly separated \Rightarrow totally separated \Rightarrow Hausdorff
Comparing the approaches

1. Shape theory $\psi : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0)$,

2. Topological separation in $\pi^q_{top}(X, x_0)$.

Question: How much of $\pi_1(X, x_0)$ does each method retain (or forget)?
Comparing the approaches

1. Shape theory, \(\psi : \pi_1(X, x_0) \to \tilde{\pi}_1(X, x_0) \),
2. Classical covering maps \(p : Y \to X \),
3. Topological separation in \(\pi_{1}^{qtop}(X, x_0) \).

Question: How much of \(\pi_1(X, x_0) \) does each method retain (or forget)?
Spanier groups

Definition:

The Spanier group of \(X \) with respect to \(\mathcal{U}_n \) is the normal subgroup

\[
\pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^{-1}] | \text{Im}(\gamma) \subset U, U \in \mathcal{U}_n \rangle.
\]

Remark: \(\pi^{sp}(\mathcal{U}_{n+1}, x_0) \subset \pi^{sp}(\mathcal{U}_n, x_0) \), \(n \geq 1 \)

The Spanier group of \(X \) is

\[
\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \pi^{sp}(\mathcal{U}_n, x_0).
\]
Spanier groups

Definition:

The Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^{-1}] | \text{Im}(\gamma) \subset U, U \in \mathcal{U}_n \rangle.$$

Remark: $\pi^{sp}(\mathcal{U}_{n+1}, x_0) \subset \pi^{sp}(\mathcal{U}_n, x_0), n \geq 1$

The Spanier group of X is

$$\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \pi^{sp}(\mathcal{U}_n, x_0).$$
Spanier groups

Definition:

The **Spanier group of** \(X \) **with respect to** \(\mathcal{U}_n \) **is** the **normal** subgroup

\[
\pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^{-}] | \text{Im}(\gamma) \subset U, U \in \mathcal{U}_n \rangle.
\]

Remark: \(\pi^{sp}(\mathcal{U}_{n+1}, x_0) \subset \pi^{sp}(\mathcal{U}_n, x_0), \ n \geq 1 \)

The **Spanier group of** \(X \) **is**

\[
\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \pi^{sp}(\mathcal{U}_n, x_0).
\]
Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps exist.

Theorem (Spanier): Given \(H \leq \pi_1(X, x_0) \),

there is a covering map
\[
p : Y \to X, \; p(y_0) = x_0 \quad \iff \quad \pi^{sp}(\mathcal{U}_n, x_0) \subseteq H \text{ for some } n \geq 1
\]
such that \(p_*(\pi_1(Y, y_0)) = H \)
Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps exist.

Theorem (Spanier): Given $H \leq \pi_1(X, x_0)$,

\[
\text{there is a covering map } p : Y \rightarrow X, p(y_0) = x_0 \quad \iff \quad \pi^{sp}(\mathcal{U}_n, x_0) \subseteq H \text{ for some } n \geq 1
\]

such that $p_*(\pi_1(Y, y_0)) = H$

Corollary: $\pi^{sp}(X, x_0)$ consists precisely of the homotopy classes $[\alpha] \in \pi_1(X, x_0)$ for which α lifts to a loop for every covering $p : (Y, y_0) \rightarrow (X, x_0)$, i.e.

\[
\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \pi^{sp}(\mathcal{U}_n, x_0) = \bigcap_{p : (Y, y_0) \rightarrow (X, x_0) \text{ covering}} p_*(\pi_1(Y, y_0))
\]
Definition: The **thick Spanier group** of X with respect to \mathcal{U}_n is the *normal* subgroup
\[
\Pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^{-1}]|\text{Im}(\gamma_i) \subset U_i, U_i \in \mathcal{U}_n, i = 1, 2 \rangle.
\]

Note $\pi^{sp}(\mathcal{U}_n, x_0) \subseteq \Pi^{sp}(\mathcal{U}_n, x_0)$

$\Pi^{sp}(\mathcal{U}_m, x_0) \subseteq \pi^{sp}(\mathcal{U}_n, x_0)$ for large enough $m = m(n) \geq n$ by paracompactness.

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \Pi^{sp}(\mathcal{U}_n, x_0)$
Definition: The **thick Spanier group of** X with respect to \mathcal{U}_n is the **normal** subgroup

$$\Pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^{-1}] | \text{Im}(\gamma_i) \subset U_i, U_i \in \mathcal{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathcal{U}_n, x_0) \subseteq \Pi^{sp}(\mathcal{U}_n, x_0)$

$\Pi^{sp}(\mathcal{U}_m, x_0) \subseteq \pi^{sp}(\mathcal{U}_n, x_0)$ for large enough $m = m(n) \geq n$ by paracompactness

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \Pi^{sp}(\mathcal{U}_n, x_0)$
Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^{-}] | \text{Im}(\gamma_i) \subset U_i, U_i \in \mathcal{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathcal{U}_n, x_0) \subseteq \Pi^{sp}(\mathcal{U}_n, x_0)$

$$\Pi^{sp}(\mathcal{U}_m, x_0) \subseteq \pi^{sp}(\mathcal{U}_n, x_0)$$ for large enough $m = m(n) \geq n$ by paracompactness

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \Pi^{sp}(\mathcal{U}_n, x_0)$
The fundamental group of a Peano continuum
The first shape homomorphism
The quasitopological fundamental group
Comparing the approaches

Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^{-}] | \text{Im} (\gamma_i) \subset U_i, U_i \in \mathcal{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathcal{U}_n, x_0) \subseteq \Pi^{sp}(\mathcal{U}_n, x_0)$

$\Pi^{sp}(\mathcal{U}_m, x_0) \subseteq \pi^{sp}(\mathcal{U}_n, x_0)$ for large enough $m = m(n) \geq n$ by paracompactness

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \geq 1} \Pi^{sp}(\mathcal{U}_n, x_0)$
Theorem (B, Fabel): There is a level short exact sequence

\[
1 \longrightarrow \Pi^{sp}(U_n, x_0) \longrightarrow \pi_1(X, x_0) \overset{(p_n)_*}{\longrightarrow} \pi_1(X_n, x_n) \longrightarrow 1
\]

Applying $\lim\limits_{\leftarrow n}$ we obtain

\[
1 \longrightarrow \pi^{sp}(X, x_0) \longrightarrow \pi_1(X, x_0) \overset{\psi}{\longrightarrow} \check{\pi}_1(X, x_0)
\]

In particular,

\[
\ker \psi = \pi^{sp}(X, x_0),
\]

\[
\check{\pi}_1(X, x_0) = \lim_{\text{regular } p} \text{coker}(p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)).
\]
The fundamental group of a Peano continuum
The first shape homomorphism
The quasitopological fundamental group
Comparing the approaches

Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

\[
\begin{array}{cccccccc}
1 & \rightarrow & \Pi^{sp}(U_n, x_0) & \rightarrow & \pi_1(X, x_0) & \xrightarrow{(p_n)_*} & \pi_1(X_n, x_n) & \rightarrow & 1
\end{array}
\]

Applying $\lim_{\leftarrow n}$ we obtain

\[
\begin{array}{cccccccc}
1 & \rightarrow & \pi^{sp}(X, x_0) & \rightarrow & \pi_1(X, x_0) & \xrightarrow{\psi} & \tilde{\pi}_1(X, x_0) & \rightarrow & 1
\end{array}
\]

In particular,

\[
\ker \psi = \pi^{sp}(X, x_0),
\]

\[
\tilde{\pi}_1(X, x_0) = \lim_{\leftarrow \text{regular } p} \coker(p_* : \pi_1(Y, y_0) \rightarrow \pi_1(X, x_0)).
\]
The fundamental group of a Peano continuum
The first shape homomorphism
The quasitopological fundamental group
Comparing the approaches

Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

\[
1 \rightarrow \Pi^{sp}(U_n, x_0) \rightarrow \pi_1(X, x_0) \xrightarrow{(p_n)^*} \pi_1(X_n, x_n) \rightarrow 1
\]

Applying \(\lim \leftarrow_n \) we obtain

\[
1 \rightarrow \pi^{sp}(X, x_0) \rightarrow \pi_1(X, x_0) \xrightarrow{\psi} \tilde{\pi}_1(X, x_0)
\]

In particular,

\[
\ker \psi = \pi^{sp}(X, x_0),
\]

\[
\tilde{\pi}_1(X, x_0) = \lim_{\text{regular } p} \text{coker}(p_* : \pi_1(Y, y_0) \rightarrow \pi_1(X, x_0)).
\]
Comparison

Lemma: Each of the collections
1. \(\pi_{\text{sp}}(U_n, x_0) \) for \(n \geq 1 \),
2. \(\Pi_{\text{sp}}(U_n, x_0) \) for \(n \geq 1 \),
3. \(N_{\pi_{\text{qtop}}^1}(X, x_0) \) for \(N_{\text{open}} \)

is cofinal in the other two (when directed by inclusion).

Theorem: If \(X \) is a Peano continuum, then
\[\ker \Psi = \pi_{\text{sp}}(X, x_0) = \bigcap N_{\pi_{\text{qtop}}^1}(X, x_0) \]

Corollary: If \(X \) is a Peano continuum, then \(X \) is \(\pi_1 \)-shape injective \(\iff \pi_{\text{qtop}}^1(X, x_0) \) is invariantly separated.
Comparison

Lemma: Each of the collections

1. $\{\pi^{sp}(U_n, x_0) | n \geq 1\}$,
2. $\{\Pi^{sp}(U_n, x_0) | n \geq 1\}$,
3. $\{N \leq \pi^{qtop}_1(X, x_0) | N \text{ open}\}$

is cofinal in the other two (when directed by inclusion).
Comparison

Lemma: Each of the collections

1. $\{\pi^{sp}(U_n, x_0) | n \geq 1\}$,
2. $\{\Pi^{sp}(U_n, x_0) | n \geq 1\}$,
3. $\{N \leq \pi^{qtop}_1(X, x_0) | N \text{ open}\}$

is cofinal in the other two (when directed by inclusion).

Theorem: If X is a Peano continuum, then

$$\ker \Psi = \pi^{sp}(X, x_0) = \bigcap_{N \leq \pi^{qtop}_1(X, x_0) \text{ open}} N.$$

Jeremy Brazas
Comparison

Lemma: Each of the collections

1. \(\{ \pi^{sp}(U_n, x_0) | n \geq 1 \} \),
2. \(\{ \Pi^{sp}(U_n, x_0) | n \geq 1 \} \),
3. \(\{ N \leq \pi^{qtop}_1(X, x_0) | N \text{ open} \} \)

is cofinal in the other two (when directed by inclusion).

Theorem: If \(X \) is a Peano continuum, then

\[
\ker \psi = \pi^{sp}(X, x_0) = \bigcap_{N \leq \pi^{qtop}_1(X, x_0) \text{ open}} N.
\]

Corollary: If \(X \) is a Peano continuum, then \(X \) is \(\pi_1 \)-shape injective \(\iff \pi^{qtop}_1(X, x_0) \) is invariants separated.
The data of the fundamental group of a Peano continuum X retain by each of

1. the covering spaces of X,
2. the shape of X,
3. open normal subgroups of $\pi_1^{qtop}(X, x_0)$.

is precisely the same.
Conclusion

The data of the fundamental group of a Peano continuum X retain by each of

1. the covering spaces of X,
2. the shape of X,
3. open normal subgroups of $\pi_1^{qtop}(X, x_0)$.

is precisely the same.

1. and 2. are exhausted but the topology of $\pi_1^{qtop}(X, x_0)$ is rarely generated by open normal subgroups.
Other data retained by $\pi_{1}^{qtop}(X, x_0)$
Other data retained by $\pi_{1}^{qtop}(X, x_0)$

<table>
<thead>
<tr>
<th></th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invariantly separated</td>
<td>π_1-shape injective</td>
</tr>
<tr>
<td>Totally separated</td>
<td>$\Omega(X, x_0)$ is π_0-shape injective</td>
</tr>
<tr>
<td>$\psi_0 : \pi_{1}^{qtop}(X, x_0) = \pi_0(\Omega(X, x_0)) \to \tilde{\pi}_0(\Omega(X, x_0))$ is injective</td>
<td></td>
</tr>
<tr>
<td>0-dimensional</td>
<td>ψ_0 is an embedding</td>
</tr>
<tr>
<td>T_3 (T_4)</td>
<td>?</td>
</tr>
<tr>
<td>T_2</td>
<td>?</td>
</tr>
<tr>
<td>T_0 (T_1)</td>
<td>Homotopically path-Hausdorff</td>
</tr>
</tbody>
</table>
Other data retained by $\pi_{1}^{qtop}(X, x_0)$

<table>
<thead>
<tr>
<th>$\pi_{1}^{qtop}(X, x_0)$</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invariantly separated</td>
<td>π_1-shape injective</td>
</tr>
<tr>
<td>Totally separated</td>
<td>$\Omega(X, x_0)$ is π_0-shape injective</td>
</tr>
<tr>
<td></td>
<td>$\Psi_0 : \pi_{1}^{qtop}(X, x_0) = \pi_0(\Omega(X, x_0)) \to \tilde{\pi}_0(\Omega(X, x_0))$ is injective</td>
</tr>
<tr>
<td>0-dimensional</td>
<td>Ψ_0 is an embedding</td>
</tr>
<tr>
<td>T_3 (T_4)</td>
<td>?</td>
</tr>
<tr>
<td>T_2</td>
<td>?</td>
</tr>
<tr>
<td>T_1 (T_0)</td>
<td>Homotopically path-Hausdorff</td>
</tr>
</tbody>
</table>
Example in cylindrical coordinates

The topology of $\pi_1^{qtop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings.

Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
Example in cylindrical coordinates

The topology of $\pi_1^{qtop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings.

Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
2. $S = \{(r, \theta, z)| z = \sin(1/r), 0 < r < 1\}$ is the surface component.
Example in cylindrical coordinates

The topology of $\pi_1^{qtop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings.

Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
2. $S = \{(r, \theta, z) | z = \sin(1/r), 0 < r < 1\}$ is the surface component.
3. Pick a countable discrete set $D \subset S$ such that $\overline{D} = D \cup C$
The topology of \(\pi_1^{qtop}(X, x_0) \) can topologically distinguish homotopy classes which are indistinguishable using shape/coverings.

Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. \(C = \{0\} \times \{0\} \times [-1, 1] \) is the core component,
2. \(S = \{(r, \theta, z)|z = \sin(1/r), 0 < r < 1\} \) is the surface component.
3. Pick a countable discrete set \(D \subset S \) such that \(\overline{D} = D \cup C \)
4. For each \(d = (r, \theta, z) \in D \), let \(A_d = [0, r] \times \{\theta\} \times \{z\} \) be the horizontal line connecting \(C \) to \(d \).
The topology of $\pi_1^{qtop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings.

Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
2. $S = \{(r, \theta, z)|z = \sin(1/r), 0 < r < 1\}$ is the surface component.
3. Pick a countable discrete set $D \subset S$ such that $\overline{D} = D \cup C$
4. For each $d = (r, \theta, z) \in D$, let $A_d = [0, r] \times \{\theta\} \times \{z\}$ be the horizontal line connecting C to d.
5. $\mathcal{S} = C \cup S \cup \bigcup_{d \in D} A_d$ is a Peano continuum such that $\ker \Psi \neq 1$ but $\pi_1^{qtop}(X, x_0)$ is T_1 (Fischer, Repovš, Virk, Zastrow) & (B, Fabel)
Open problems

Problem 1: If X is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_2, must $\pi_1^{qtop}(X, x_0)$ be invariantly separated (i.e. X π_1-shape injective)?

Problem 2: If X is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_1, must $\pi_1^{qtop}(X, x_0)$ be T_4 (equivalently T_3)?
Open problems

Problem 1: If X is a Peano continuum and $\pi_{1}^{qtop}(X, x_0)$ is T_2, must $\pi_{1}^{qtop}(X, x_0)$ be invariantly separated (i.e. X π_1-shape injective)?

Problem 2: If X is a Peano continuum and $\pi_{1}^{qtop}(X, x_0)$ is T_1, must $\pi_{1}^{qtop}(X, x_0)$ be T_4 (equivalently T_3)?

Thank you!