Find the following limit:

\[
\lim_{n \to \infty} \left(\sin(\sqrt{n + 3}) - \sin(\sqrt{n}) \right) \left(\cos(\sqrt{n + 3}) + \cos(\sqrt{n}) \right)
\]

Please submit your solution to:

- Dr. Christian Avart, cavart@gsu.edu

before the deadline: February 29th, 7:00PM. The WINNER will be awarded with a $15 gift card and a certificate and will be announced in the NEXT issue.

Solution to the January Problem of the Month.

Since \(a_0 = r, a_1 = \sqrt{r}, a_2 = \sqrt[4]{r}, \ldots \), we have \(a_n = r^{1/2^n} \). Since \(r^{1/2^n} = (r^{1/2})^{1/n} \) and \(\lim_{n \to \infty} x^{1/n} = 1 \) for any \(x > 0 \), we obtain \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} (r^{1/2})^{1/n} = 1 \).

Winner: Zack Ritter