1. Properties of UFDs and affine domains

We remind the reader the following characterization of UFDs. A ring is an UFD if and only if it has the ACC condition on principal ideals and every irreducible is prime.

Theorem 1.1. A Noetherian domain R is an UFD if and only if every height one prime ideal of R is principal.

Proof. Suppose that R is UFD. Let P a height one prime ideal of R and choose $0 \neq x \in P$. We can write $x = f_1 \cdots f_n$ where f_i are all prime elements, for $i = 1, \ldots, n$. Then $x \in P$ implies that, for some i, $(f_i) \subseteq P$. But (f_i) is a prime ideal of height one, so $P = (f_i)$.

Conversely, we need to show that every irreducible element is prime. Let f be an irreducible element and consider a minimal prime P over (f). Then by Krull’s PIT we have that $\text{ht}(P) = 1$, and so there exists $x \in P$ such that $P = (x)$. But then, $f = yx$ for some $y \in R$. But f is irreducible and so y is a unit. Hence $P = (f)$ and so f is a prime element.

□

Lemma 1.2. Let $A \subseteq R$ be an integral extension of domains with A UFD. Let P be a prime ideal in R of height one. The $P \cap A$ is principal.

Proof. Since A is UFD, then A is normal, so we can apply the Going-Down Theorem. Hence $1 = \text{ht}(P) = \text{ht}(P \cap A)$.

But A is UFD so $P \cap A$ must be principal since it is a height one prime in A. □

Proposition 1.3. Let k be a field and R be a finitely generated k-algebra. Assume that R is domain (such rings are called affine domains). The $\text{dim}(R)$ is finite and any saturated chain of prime ideals has length equal to $\text{dim}(R)$.

1
Proof. By Noether normalization R is module finite over a polynomial subring of the form $A = k[x_1, \ldots, x_n]$, for some n. Since $A \subset R$ is integral we get $\dim(R) = \dim(A) = n$.

So $n = \dim(R)$. We will do induction on n. The case $n = 0$ is obvious.

Let $P_0 \subset P_1 \subset \cdots \subset P_m$ be a saturated chain of prime ideals in R.

Mod out by P_1 and let $B = R/P_1$. Let us show that B has dimension $n - 1$.

We have $A \subset R$ is module finite extension so $A/(P \cap A) \subset B$ is module-finite as well. But $P_1 = (f)$ for some f prime element in A, because A is UFD and P_1 is a height one prime ideal.

Therefore B is module finite over $A/(f)$. But we can first change variables in f so that f is monic in x_n. Then it is clear that $A/(f)$ is module finite over $k[x_1, \ldots, x_{n-1}]$ generated by $1, x, \ldots, x^k$ where k is the degree of f.

By the transitivity of the module-finite property we get that B is module finite over a polynomial ring over field in $n - 1$ indeterminates. So $\dim(B) = n - 1$.

By induction we are now done. □

Proposition 1.4. Let R be an affine domain over a field k (i.e an k-affine domain). Then $\text{trdeg}_k(R) = \dim(R)$.

Proof. By Noether normalization there exists $A = k[x_1, \ldots, x_n] \subseteq R$ module finite over A.

Then $k(x_1, \ldots, x_n) \subseteq (A \setminus 0)^{-1}R$ is an integral extension over a field, so $(A \setminus 0)^{-1}R$ is a field itself.

But then $Q(R)$ is a field as well (as a ring of fractions of a field), and so it must equal $(A \setminus 0)^{-1}R$. So, it is algebraic over $k(x_1, \ldots, x_n)$ which says that $\text{trdeg}_k(R) = n = \dim(R)$. □
2. Valuation rings and invertible ideals

Definition 2.1. A domain \(R \) is called a valuation ring if for every \(x \in Q(R) \), \(x \in R \) or \(x^{-1} \in R \). This is equivalent to the condition that any for any two elements in \(R \) one divides the other. Sometimes we say that \(R \) is a valuation ring of \(K = Q(R) \).

It is rather easy to see that, in a valuation ring, for any two ideals \(I, J \) one has that \(I \subseteq J \) or \(J \subseteq I \). Therefore a valuation ring \(R \) is local. We will denote the maximal ideal of \(R \) by \(m \).

Theorem 2.2. Let \(A \) be a subring of \(K \) and let \(p \in \text{Spec}(A) \). Then there exists a valuation ring \(R \) of \(K \) such that \(A \subset R \) and \(m \cap A = p \).

Proof. We can replace \(A \) by \(A_p \) and so we can assume that \(A \) is local and \(p \) is its maximal ideal. Consider the family \(\Gamma \) of all subrings \(A \subset B \) of \(K \) such that \(1 \notin pB \). Then \(\Gamma \) satisfies the Zorn lemma conditions. Let \(R \) be a maximal element of \(\Gamma \). Clearly if we localize at a maximal ideal of \(R \) containing \(pR \) (which exists since \(pR \neq R \)) then we get a larger example so it follows that \(R \) is local with maximal ideal say \(m \). Also, it is clear that \(m \cap A = p \).

It remains to show that \(R \) is a valuation ring of \(K \).

Let \(x \notin K \setminus R \). But \(R \subset R[x] \), so \(1 \in pR[x] \), hence we have a relation of the form

\[
a_0 + a_1 x + \cdots + a_n x^n = 1,
\]

where \(a_i \in pR \subset m \), for all \(i = 1, \ldots, n \).

But \(1 - a_0 \) is invertible in \(R \), so the relation can be modified to a relation of the form

\[
1 = b_1 x + \cdots + b_n x^n,
\]

with \(b_i \in m \), \(i = 1, \ldots, n \). Take a minimal \(n \) for which such a relation exists.

Apply the same reasoning for \(x^{-1} \) in case \(x^{-1} \). Hence we can a minimal \(m \) such that there exists a relation of the type

\[
1 = c_1 x^{-1} + \cdots + c_m (x^{-1})^m,
\]

with \(c_i m \), for all \(i \).
If $n \geq m$, by multiplying the first relation by $b_n x^n$, and subtracting from the first we get contradict the minimlatiy of n. Similar reasoning goes if $m > n$.

Proposition 2.3. A valuation ring is integrally closed.

Proof. Let R be a valuation ring and $x \in K = Q(R)$.

Then there exists an integral dependence relation:

$$x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0 = 0,$$

where $a_i \in R$. Assume that $x \notin R$. Then $x^{-1} \in R$ and more precisely $x^{-1} \in m$, otherwise x itself is in R. Since $x \neq 0$ we can divide by it.

Then $1 = (a_{n-1}x^{-1} + \cdots + a_1 x^{n-1} + a_0 x^{-n}) \subseteq m$, since x^{-1} is in m. Contradiction.

Theorem 2.4. Let A be a subring of a field K. Then the integral closure of A in K is the intersection of all valuation rings of K containing A.

Proof. Let \overline{A}_K be the integral closure of A in K. The above Proposition implies that if B is a valuation ring then $\overline{A}_K \subset B$.

Conversely, let $a \in K \setminus \overline{A}_K$. It suffices to show that there exists a valuation ring B of K which does not contain x but contains A. Let $1/x = y \in K$ and note that $yA[y] \neq A[y]$ otherwise x is integral over A.

Let m be a maximal ideal of $A[y]$ containing $yA[y]$. Then there exists a valuation ring of K containing A such that $A[y] \cap m_B = m$. But then $y \in m_B$. This implies that $1/y \notin B$, and so $x \notin B$.

Definition 2.5. A totally ordered Abelian group is a group $(G, +)$ that admits a total relation on G, say \geq, such that $x \geq y, u \geq t$ implies $x + u \geq y + t$.

Let R be a valuation ring and consider the set $G = \{xR : x \in K, x \neq 0\}$. One can prove that G is an Abelian group with the operation $xR + yR := xyR$. In fact, G is a
totally ordered Abelian group with $xR \leq yR$ if and only if $yR \subseteq xR$. we will refer to G as the value group associated to R.

Definition 2.6. Let K a field and G be a totally ordered Abelian group. An additive valuation on K with value group G is a function $v : K \to G \cup \{\infty\}$ such that

1. $v(x + y) \geq \min\{v(x), v(y)\}$
2. $v(xy) = v(x) + v(y)$,
3. $v(x) = \infty$ if and only if $x = 0$.

Proposition 2.7. Let R be a valuation domain. Let G be the value group associated to R and define $v : K \to G \cup \{\infty\}$ by $v(x) = xR$, for $x \neq 0$ and $v(0) = \infty$. Prove that v is an additive valuation on K with value group G.

Proof. The proof is a simple verification. □

Now consider a valuation v on a field K, $v : K \to G \cup \{\infty\}$. Let $R_v = \{x \in K : v(x) \geq 0\}$. One can check that R_v is a subring of K and a domain. The group G will be called the value group of R.

Proposition 2.8. Using the notations introduced in the paragraph above, R_v is valuation ring of K with maximal ideal $m_v = \{x \in K : v(x) > 0\}$.

Theorem 2.9. Let R be a valuation ring. Then the value group of R is isomorphic to \mathbb{Z} if and only if R is DVR.

Proof. Let $v : K \to \mathbb{Z}$ an additive surjective valuation v such that $R_v = R$. Let $u \in R$ such that $v(u) = 1$. Clearly, $u \in m$. Let $x \in m$ and say that $v(x) = n$. Then $v(x/u^n) = 0$ and x/u^n is invertible in R, or $x = u^n \cdot y$, y unit in R. This proves that R is DVR. Conversely, if R is DVR, with uniformising element u, then for any given $0 \neq x \in R$, there exist a unique $n \geq 0$ such that $x \in m^n = (u^n) \setminus m^{n+1} = (u^{n+1})$.

Let $a/b \in K$, nonzero. Set $v(a/b) = v(a) - v(b) \in \mathbb{Z}$. It can be seen that if $a/b = c/d$ then $v(a) - v(b) = v(c) - v(d)$, and so $v(-)$ is well defined. The fact that $v(-)$ is an additive valuation as well as that $R_v = R$ can be readily seen. □
Definition 2.10. Let P be an R-module. We say that P is projective if for any R-modules M, N, any surjective R-linear map $g : M \to N$ and any R-linear map $f : P \to N$, there exists an R-linear map $h : P \to M$ such that $h \circ f = g$.

Example 2.11. An free R-module is projective. Indeed if $F = \bigoplus_{i \in I} \mathbb{R}e_i$, denote $f(e_i) = n_i$ and lift n_i to $m_i \in M$ by $g(m_i) = n_i$. Then construct h by letting $h(e_i) = m_i$, for all $i \in I$.

Theorem 2.12. Let P be an R-module. Then P is projective if and only if P is direct summand of a free R-module, i.e. there exists an R-module Q such that $P \oplus Q$ is free.

Proof. Assume that P is projective. Let $\{x_i\}_i$ be a generating set for P. Map a free module $F = R^{(I)}$ onto P by $f : R^{(I)} \to P$, by letting $f(e_i) = x_i$ for all i. Consider $g = \text{id}_P : P \to P$. By the definition of a projective module there exists an R-linear map $h : P \to F$ such that $f \circ h = \text{id}_P$. This implies that P is a direct summand of $F = R^{(I)}$.

The converse is left as an exercise. □

Let R be a domain and let $K = \mathbb{Q}(R)$ be its fraction field.

Definition 2.13. An R-submodule I of K is called a fractional ideal if there exists $u \in R$ such that $uI \subseteq R$. For a fractional ideal I we can define $I^{-1} = \{x \in K : xI \subseteq R\}$. If $I^{-1}I = R$ we say that I is an invertible ideal of R. A fractional ideal is called divisorial if $(I^{-1})^{-1} = I$.

Note that since $uI \simeq I$ any fractional ideal I is finitely generated, whenever R is Noetherian. Also, any invertible ideal I is finitely generated: indeed $1 = \sum_{i=1}^{n} b_i a_i$ with $b_i \in I^{-1}, a_i \in I$. Therefore $x = \sum_{i=1}^{n} (b_i x) a_i$ for all $x \in I$, and by the definition of I^{-1} we see that $b_i x \in R$. Hence $I = \langle a_1, \ldots, a_n \rangle$.

Also, note that I^{-1} is fractional, if I is a fractional ideal (it follows immediate from the definition).

Theorem 2.14. Let R be a domain and I a fractional ideal. The following assertions are equivalent:
(1) \(I\) is invertible;
(2) \(I\) is \(R\)-projective;
(3) \(I\) is finitely generated and for any maximal ideal \(P\) of \(R\), \(I_P\) is a cyclic \(R_P\)-module.

Proof. (1) implies (2): Since \(I\) can be generated by finitely many elements, say \(n\), using the same notations as the ones introduced above note that there exists a map \(f : I \to R^n\), defined by \(f(x) = (b_i x)_i\). We have a natural onto homomorphism \(g : R^n \to I\) defined by \(g(e_i) = a_i\). Clearly \(gf = id_I\) so \(I\) is a direct summand in \(R^n\) hence projective.

(2) implies (1):

First note that any \(R\)-linear map \(h : I \to R\) is of the form \(h(a) = ka\), where \(k \in K\). We can assume that \(I\) is an ideal of \(R\). Then for any \(a, b \in I\) we can see that \(bf(a) = f(ab) = af(b)\) and so \(f(a)/a\) is constant if \(a \neq 0\). Denote this by \(k\) and note that \(f(a) = ka\).

Let \(g : F = R^{(I)} \to I\) a surjective homomorphism such that \(g(e_i) = a_i\). This map splits hence there exists \(f : I \to F\) such that \(gf = id_I\). But then \(f = (f_i)\) with \(f_i : I \to R\) and hence \(f_i(x) = k_i x\) for all \(x \in I\). For every \(x\) finitely many \(f_i(x)\) are nonzero, therefore finitely many \(k_i\) are nonzero. We remark that \(b_i x = f_i(x) \subset R\), so \(b_i \in I^{-1}\).

Then for all \(x \in I\), \(x = \sum a_i k_i x\) and so \(1 = \sum a_i k_i\) which prove that \(II^{-1} = R\).

(1) implies (3):

Using the notations above, the equality \(1 = \sum_{i=1}^{n} a_i b_i\) implies that there exists \(i\) such that \(a_i b_i R \setminus P\). Then \(IR_P = a_i R_P\). Indeed if \(x \in I\), then \(x = \frac{a_i b_i}{a_i b_i} \in a_i R_P\). The reverse inclusion follows because \(a_i \in I\).

(3) implies (1):

By the lemma proved earlier, for any prime \(P\), \((I^{-1})_P = (I_P)^{-1}\).

Assume that \(II^{-1} \neq R\), then exists a maximal ideal \(P\) such that \(II^{-1} \subset P\). Since \(I_P\) is cyclic, then \(I_P \cdot (I_P)^{-1} = R_P\).

But then \((I \cdot I^{-1})_P = I_P \cdot (I^{-1})_P = I_P \cdot (I_P)^{-1} = R_P\), which is a contradiction.

\(\square\)