Lecture 12

1. Integral extensions and the Going-Up Theorem

Definition 1.1. Let \(\phi : R \to S \) be a ring homomorphism. Then \(\phi^* : \text{Spec}(S) \to \text{Spec}(R) \) by mapping each \(Q \) to \(Q \cap R = \phi^{-1}(Q) \). Let \(P \in \text{Spec}(R) \). Then a prime ideal \(Q \in \text{Spec}(S) \) lies over \(P \) if \(Q \cap R = P \), i.e., \(\phi^*(Q) = P \).

Proposition 1.2. If \(R \subseteq S \) is an integral extension of rings, \(I \leq R \), and \(u \in IS \cap R \), then \(\exists n \) such that \(u^n \in I \). Moreover, if \(I = \text{Rad}(I) \) (in particular if \(I \) is prime), then \(IS \cap R = I \).

Proof. Let \(u \in IS \). Then \(u = \sum_{t=1}^{n} j_t \theta_t \), with \(\theta_t \in S \) and \(j_t \in I \). So we may assume that \(S = R[\theta_1, \ldots, \theta_n] \), (i.e., \(S \) is integral and finitely generated over \(R \)). It suffices to show that if \(u \in IR[\theta_1, \ldots, \theta_n] \cap R \), then \(u \in \text{Rad}(I) \). Since \(S \) is module finite over \(R \), we can write \(S = Rs_1 + \cdots + Rs_m \) by taking \(s_1 = 1 \) if \(1 \notin \{s_1, \ldots, s_n\} \). For each \(k \), \(us_k = \sum_{j=1}^{m} \alpha_{kj} s_j \) with \(\alpha_{kj} \in I \), since \(uS \subseteq IS \). So the matrix \([uI - \alpha_{kj}] \) times the column vector of \(s \)'s equals to zero. But \(s_1 = 1 \) and the determinant of that matrix must be zero. So, by expanding the determinant, \(u^n + r_{m-1}u^{m-1} + \cdots + r_1 u + r_0 = 0 \), with \(r_i \in I^{m-i} \), and all but the first term in \(I \). This implies \(u^n \in I \).

The second part of the statement follows immediately from the first.

\[\square \]

Proposition 1.3. Let \(h : R \to S \) be a homomorphism of rings, and let \(P \in \text{Spec}(R) \). Then the following assertions are equivalent:

(i) \(\exists Q \in \text{Spec}(S) \) with \(h^{-1}(Q) = Q \cap R = P \);

(ii) \(\text{Im}(R \setminus P) \cap PS = \emptyset \);

(iii) \(h^{-1}(PS) = P \).

Proof. The equivalence between (ii) and (iii) is clear by definition of \(h \). For (i) implies (ii), if \(\exists Q \) with \(Q \in \text{Spec}(S) \) and \(Q \cap R = P \), then \(P \subseteq h^{-1}(PS) \subseteq h^{-1}(Q) = Q \cap R = P \). So \(P = h^{-1}(PS) \). For (ii) implies (i), note that \(R \setminus P \) is a multiplicative set in \(R \), so
Proposition 1.4. Let $R \subseteq S$, with S a domain, and take $0 \neq s \in S$, with s integral over R. Then there is a nonzero multiple of s in R. Moreover, if $0 \neq J \subseteq S$, then $J \cap R \neq 0$.

Proof. Since s is integral over R, $\exists n$ such that $s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0$ with $a_i \in R$. Let n be minimal among all integral dependence equations. Then $a_0 \neq 0$ because if $a_0 = 0$ then $s(s^{n-1} + \cdots + a_1) = 0$ and since $s \neq 0$, it gives that $s^{n-1} + \cdots + a_1 = 0$. Since S is a domain, but this contradicts n being minimal. So $s(s^{n-1} + \cdots + a_1) = -a_0 \in R \setminus \{0\}$.

For the second part of the statement, let $0 \neq s \in J$. Then a power of s is in R, hence in $J \cap R$, and it is of course nonzero since R is a domain.

Our next goal is to prove the following theorem, but we will need to develop a few ideas along the way.

Theorem 1.5 (Going-up Theorem). Let $R \subseteq S$ be an extension of rings, and assume that S is integral over R. Then the following are true:

1. (Lying Over) For every $P \in \text{Spec}(R)$, $\exists Q \in \text{Spec}(S)$ that lies over P, i.e., $Q \cap R = P$.
2. (Incomparability) If $Q \neq Q'$, with $Q, Q' \in \text{Spec}(S)$, and $Q \cap R = Q' \cap R = P$, then Q and Q' are incomparable, i.e., if $Q \subset Q'$ then $Q \cap R \subset Q' \cap R$.
3. (Going-Up) If $P_0 \subset P_1 \subset \cdots \subset P_n$

is a strictly ascending chain of prime ideals in R, then there is a strictly ascending chain of prime ideals in S,

$Q_0 \subset Q_1 \subset \cdots \subset Q_n$

with $Q_i \cap R = P_i$ for every $0 \leq i \leq n$.

Proof. (1) According to Proposition 1.3, we need to show that $PS \cap R = P$. But this follows at once from Proposition 1.2.
(2) Let us assume that there exists a pair of prime ideals $Q \subsetneq Q'$ such that $Q \cap R = Q' \cap R = P$.

Note that $R \hookrightarrow S$ induces a natural map $R/P \hookrightarrow S/Q$ that takes $\overline{a} \mapsto \overline{a}$. Now, since $Q \cap R = P$, the above map is injective, that is it gives an extension of rings. But $R \hookrightarrow S$ is integral, so our new map is also integral. Moreover, S/Q is a domain. We can apply Proposition 1.4 to conclude $\frac{Q'}{Q} \cap \frac{R}{P} \neq 0$. But $Q' \cap R = P$ gives that $\frac{Q'}{Q} \cap \frac{R}{P} = 0$. So we obtained a contradiction.

(3) It suffices to show the claim for $n = 1$, so given $P \subseteq P'$ and $Q \cap R = P$, find Q'. We have $R/P \hookrightarrow S/Q$ an integral extension of domains, and $P'/P \in \text{Spec}(R/P)$. Applying part (1), we know that there exist a prime ideal in S/Q say $\frac{Q'}{Q}$ such that $\frac{Q'}{Q} \cap \frac{R}{P} = P'$, so $Q' \cap R = P'$, with $Q' \in \text{Spec}(S)$.

\[\square\]

Corollary 1.6. If $R \hookrightarrow S$ is an integral extension, then $\dim R = \dim S$.

Proof. Given a chain of primes in S, by intersecting each term with R, we obtain a chain of primes in R. Applying the part (2) of the above theorem we get $\dim S \leq \dim R$. Parts (1) and (3) show $\dim R \leq \dim S$. \[\square\]

Corollary 1.7. If $R \hookrightarrow S$ is an integral extension and $u \in R$ has an inverse in S, then u has an inverse in R.

Proof. We know uR is an ideal in R. If u has no inverse in R, then $uR \subseteq \mathfrak{m}$, where \mathfrak{m} is maximal in R. By the lying over property, $\exists Q \in \text{Spec}(S)$ such that $uS \subseteq Q \subset S$, a contradiction, since $uS = S$. \[\square\]

Corollary 1.8. Let $R \hookrightarrow S$ be an integral extension. If S is a field then R is a field.

Proof. Follows at once from the above Corollary. \[\square\]

Corollary 1.9. Let $R \hookrightarrow S$ be an integral extension. Then if $M \in \text{Max}(S)$, then $M \cap R = \mathfrak{m} \in \text{Max}(R)$.

Proof. Since $M \cap R \in \text{Spec}(R)$, then $R/\mathfrak{m} \hookrightarrow S/M$ is an integral extension of domains, and so S/M is a field. This implies $\mathfrak{m} \in \text{Max}(R)$. \[\square\]
2. The dimension of a polynomial ring over a field

Definition 2.1. Let $K \subseteq L$ a field extension. We say that $\alpha_1, \ldots, \alpha_n \in L$ form a transcendence basis for the extension if they algebraically independent over K and $K(\alpha_1, \ldots, \alpha_n) \subseteq L$ is algebraic. The number n is denoted by $\text{trdeg}_K(L)$.

By definition, for a K-algebra domain A, we set $\text{trdeg}_K(A) = \text{trdeg}_K(L)$, where L is the fraction field of A.

Note that it is know that the notion of transcendence basis is well defined, and that any set of K-algebraically independent elements of L can be completed to a transcendence basis of L over K. Moreover, if $L = K(X)$ for some subset X of L, then a transcendence basis of L over K can be extracted from X.

Theorem 2.2. Let k be a field. Then $\dim(k[X_1, \ldots, X_n]) = n$.

Proof. Let $A = k[X_1, \ldots, X_n]$. Clearly

$$0 \subset (X_1) \subset \ldots \subset (X_1, \ldots, X_n)$$

is a strict chain of prime ideals so $\dim(A) \geq n$.

Claim: Let $P \subsetneq Q$ prime ideals in A. Then $\text{trdeg}_k(A/P) > \text{trdeg}_k(A/Q)$.

Since A is a domain any maximal chain of prime ideals will have to start with the zero ideal. The above claim implies a maximal chain of length strictly greater than n gives $\text{trdeg}_k(A) > n$. But it is well known that $k(X_1, \ldots, X_n)$ has transcendence degree equal to n. So all maximal chains of prime ideals in A have length at most n, so $\dim(A) \leq n$.

Let us concentrate on proving the Claim.

Since A/P maps onto A/Q we see that $\text{trdeg}_k(A/P) \geq \text{trdeg}_k(A/Q) = r$. Assume that we have equality.

Clearly, if we denote the images of X_i in A/Q by α_i, then $A/Q = k[\alpha_1, \ldots, \alpha_n]$. Because $k(\alpha_1, \ldots, \alpha_n)$ is the fraction field of A/Q, we can extract a transcendence basis for A/Q over k from $\{\alpha_1, \ldots, \alpha_n\}$, say $\alpha_1, \ldots, \alpha_r$.
Let u_i equal the image of X_i in A/P, for $i = 1, \ldots, n$. Since u_i maps to α_i, we get that u_1, \ldots, u_r are algebraically independent over k as well so they form a transcendence basis of A/P over k.

Let $S = k[X_1, \ldots, X_r] \setminus \{0\}$. Since $\alpha_1, \ldots, \alpha_r$ and u_1, \ldots, u_r are algebraically independent over k we get that $P \cap S = Q \cap S = \emptyset$.

Let us denote $K = k(X_1, \ldots, X_r)$. Then $S^{-1}A = K[X_{r+1}, \ldots, X_n]$. Moreover

$$\frac{S^{-1}A}{PS^{-1}A} \simeq k(u_1, \ldots, u_r)[u_{r+1}, \ldots, u_n].$$

But u_{r+1}, \ldots, u_n are algebraic over $k(u_1, \ldots, u_r)$, so $k(u_1, \ldots, u_r)[u_{r+1}, \ldots, u_n]$ is in fact a field.

This gives that $PS^{-1}A$ is a maximal ideal in $S^{-1}A$, or, in other words, P is a prime ideal of A maximal with the property that $P \cap S = \emptyset$. This is clearly not true since $P \subsetneq Q$ and $Q \cap A = \emptyset$.

\[\square\]