Lecture 3

1. REVIEW OF BASIC FACTS ON IDEALS

Definition 1.1. Let P < A be a proper ideal. Then P is a prime ideal if whenever
ab € P, we have a € P or b € P.

Proposition 1.2. Let ¢ : A — A’ a ring homomorphism.
(1) If P is prime in A’ then ¢~1(P') = P is prime in A;
(2) If ¢ is surjective, P is prime in A, and ker ¢ C P then ¢(P) = P’ is prime in A’.
Generally, 1 (P') is denoted by P' N A.

Proof. For (a), let ab € ¢~'(P'). Then ¢(ab) € P', and ¢(ab) = ¢(a)p(b), so either
#(a) € P' or ¢(b) € P, so either a € ¢~ 1(P’) or b € ¢~ 1(P).

For (b), let a't/ € A’'N¢(P). Then ¢ is surjective so 3 a,b € A such that ¢(a) = @’ and
o(b) = V. Also, ¢(a)p(b) = ¢(ab) € ¢(P) implies ¢p(ab) = ¢(p) for some p € P. Thus
ab—p € ker¢ C P soabe P. Thus a € P or b € P which implies ¢’ = ¢(a) € ¢(P) or
W = ¢(b) € ¢(P). O

In general, for any surjective ring homomorphism ¢ : A — A’, we have that A" ~

k—q§ by the Fundamental Isomorphism Theorem, and ideals in I in A’ have the form
er

=% 5 with J < A and ker ¢ C J. Moreover, the assignment I — J is an one-to-one
er

corespondence between ideals of A" and ideals of A containing ker ¢.

Remark 1.3. Take 4 M and I < A such that IM = 0. Then M is an A/I-module and
M has the same module structure as M over A. Namely, the A/I-module structure on
M is defined as follows: if @ € A/I, @m := am. This is well defined since if @ = b then
a—>bel, but (a —bym=0soam = bm.

We often consider £4(M), the lattice of A-submodules of M. In the case IM = 0, this
is the same as L4,7(M) by the above remark.

Corollary 1.4. (1) P is a prime ideal in A if and only if A/P is a domain;
(2) (0) is a prime ideal if and only if A is a domain;
(3) Let RC S. If S is a domain then so is R.

Proof. Simple exercise. ]



Let (P, <) be a partially ordered set. A chain of elements in P is a sequence {a;}ics
such that for all ¢, 7 € I either a; < a; or a; < a;. A subset of P, say S admits an upper
bound if 3z € P such that z < z for every x € S.

Lemma 1.5. (Zorn’s Lemma) If P is a partially ordered set such that every non-empty
subset of P that is totally ordered admits an upper bound, then P has a maximal element,
i.e., 3 x € P such that if v < y then x = y. In fact, for each a € P, one can find a

mazimal element X with a < X.

Theorem 1.6. (Krull) If AM 1is finitely generated and L is a proper submodule of M,
then there is a maximal proper submodule of M, say N, with L < N.

Proof. We shall just sketch the main ideas. Let P ={N : N < M,N # M,L C N} and
consider (P, C). Note that L € P.

We need to show that every nonempty totally ordered subset of P has an upper bound.
Let {N,}ier be a chain in P. Then N = UNi is an A-submodule of M, as it can be

iel
checked easily. It contains L.

It is proper since M is finitely generated: If M = Azy + ...+ Az, and N = M,
there exists ¢ € I containing all xy,...,z,, by the chain condition, which in turn leads
to N; = M. This is impossible, so [N is proper too.

Therefore, Zorn’s Lemma can be applied and we obtain a maximal proper submodule
of M containing L.

OJ

Corollary 1.7. Every ring has a maximal ideal.

Proposition 1.8. Let ¢ : A — A’ be a surjective homomorphism of rings. Then the
following are true:
(1) If m’ is a mazimal ideal in A’ then m' N A = ¢~ (') is mazimal in A;

(2) If m is mazimal in A and m D ker ¢ then ¢p(m) is mazimal in A'.

Proof. This follows from the Correspondence Theorem for quotiens and considering A —
A
. OJ
ker ¢
Proposition 1.9. An ideal m is mazimal in A if and only if A/m is a field.

Definition 1.10. If A is a ring then the Jacobian radical of A is the intersection of all
mazimal ideals in A. This is denoted by Jac(A) (or Rad(A) or J(A)).
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Definition 1.11. A local ring is a ring A with a unique maximal ideal. Sometimes
in recent literature this definition includes the Noetherian condition. In that context, a
quasi-local ring 1s a local ring not necessarily Noetherian. In our notes, we do not assume
that the Noetherian condition is part of the definition of a local ring.

A nonzerodivisor (NZD) on an A-module M is an element 0 # a € A with the
property that am = 0, m € M implies m = 0.

Let A be a domain. An A-module M is called torsion-free if am = 0, for a # 0,a €
A,m € M implies m = 0.

2. KRULL’S INTERSECTION THEOREM

Theorem 2.1. (Krull’s Intersection Theorem) Let A be Noetherian, I < A, 4M finitely
generated, and take L = ﬂ I"M. Then I-L = L.

n=1
Proof. First note that the module M is Noetherian over A. So we can find a submodule
N of M that is maximal with property that N N L = I'L. First we will show that there
is n such that I"M C N:

Let a € I and let P, = {x € M : a’x € N} which can be easily checked that it is an A-
submodule of M. The family of { P;} forms an ascending chain condition in M so it must
stabilize; there exists m such that P, = P11 = ..... We claim that (¢™M+N)NL = IL.
Note that /L C L, IL C N C a™M +n. Now let z € (™M + N)NL. Then z = a™z +y
with € M and y € N and moreover z € L. So, az € alL C IL C N and this implies
that ™2 € N, that is # € P, = P,,. In conclusion ¢™z € N and this shows that
z € N, since z =a™x +y,y € N. But NN L = IL and this gives that z € I L. So, our
claim is true, and in particular ™M + N = N, by maximality of N and hence a™ M C N.

Let I = (ai,...,an) and m; integers, for ¢ = 1,...,h, such that a;"M C N. For
n=m;+---+m,, weseethat "M C N.

To finish the proof, let us remark that L C I"M C N and hence L= NNL =1L.

O

Lemma 2.2. Let I < A, 4M finitely generated by n elements. If a € A such that
aM C IM, then 3b € I such that (a" + b)M = 0.

n
Proof. Let M =4 (x1,...,x,), with ; € M. Then for every i, ax; = Zaijxj with
j=1

a;; € I. Set A = (a;;) € M,(A). Note that (a- I, — A) - X = 0 where X is the column
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vector of the x;’s, and I, is the n x n identity matrix. Conclude that det(al,, — A)X = 0.
Thus det(al, — A) - M = 0 because if an element kills every generator of M, then it
kills M also. But, by using the definition of the determinant, we see that we can write

det(al, — A) = a™ + b where b is a sum of terms each containing some a;; € I and hence

b belongs to I. 0

Corollary 2.3. If I < A, sM finitely generated and IM = M then 3 b € I such that
(14+b)M = 0.

Proof. Set a =1 in the above lemma. 0

The following lemma is important in the study of commutative rings and is a corollary

of the statement above:

Lemma 2.4. (NAK Lemma) If M is a finitely generated module over A, I C Jac(A),
and IM = M, then M = 0.

Proof. By the Corollary above, we have that there exists b € I such that (14 b)M = 0.
But, since I C Jac(A) = (| m, where the intersection is taken over all maximal ideals m
of A, it follows that 1+b ¢ m for any m maximal ideal of A (otherwise, 1 = 1+b—0 € m,

for some m maximal ideal of A). Therefore 1 + b is invertible in A and so M = 0.

O

Corollary 2.5. Let A be a Noetherian domain, and 4 M be finitely generated and torsion
free. Take I < A. Then ﬂ I"M = 0.

n=1

Proof. First apply Krull’s theorem. Then L = ﬂ I"M and IL = L. By the previous
n=1

corollary, 3 b € I such that (1+b)L = 0 which implies L = 0, since M is torsion-free. [J

Corollary 2.6. Let A be Noetherian, I < A, I C Jac(A) = (\m over all mazximal ideals
m of A, and M be finitely generated. Then m I"M = 0.

n=1

Proof. As before, proceed to L = ﬂ I"M and (1 +0b)L = 0 for some b € I. Note that

n=1

14 b is a unit in A because 1 + b is not in any maximal ideal of A. Thus L = 0. U



