
Lecture 3

1. Review of basic facts on ideals

Definition 1.1. Let P ≤ A be a proper ideal. Then P is a prime ideal if whenever

ab ∈ P , we have a ∈ P or b ∈ P .

Proposition 1.2. Let φ : A→ A′ a ring homomorphism.

(1) If P ′ is prime in A′ then φ−1(P ′) = P is prime in A;

(2) If φ is surjective, P is prime in A, and kerφ ⊆ P then φ(P ) = P ′ is prime in A′.

Generally, φ−1(P ′) is denoted by P ′ ∩ A.

Proof. For (a), let ab ∈ φ−1(P ′). Then φ(ab) ∈ P ′, and φ(ab) = φ(a)φ(b), so either

φ(a) ∈ P ′ or φ(b) ∈ P ′, so either a ∈ φ−1(P ′) or b ∈ φ−1(P ′).
For (b), let a′b′ ∈ A′∩φ(P ). Then φ is surjective so ∃ a, b ∈ A such that φ(a) = a′ and

φ(b) = b′. Also, φ(a)φ(b) = φ(ab) ∈ φ(P ) implies φ(ab) = φ(p) for some p ∈ P . Thus

ab − p ∈ kerφ ⊆ P so ab ∈ P . Thus a ∈ P or b ∈ P which implies a′ = φ(a) ∈ φ(P ) or

b′ = φ(b) ∈ φ(P ). �

In general, for any surjective ring homomorphism φ : A → A′, we have that A′ '
A

kerφ
by the Fundamental Isomorphism Theorem, and ideals in I in A′ have the form

I =
J

kerφ
with J ≤ A and kerφ ⊆ J . Moreover, the assignment I → J is an one-to-one

corespondence between ideals of A′ and ideals of A containing kerφ.

Remark 1.3. Take AM and I ≤ A such that IM = 0. Then M is an A/I-module and

M has the same module structure as M over A. Namely, the A/I-module structure on

M is defined as follows: if a ∈ A/I, am := am. This is well defined since if a = b then

a− b ∈ I, but (a− b)m = 0 so am = bm.

We often consider LA(M), the lattice of A-submodules of M . In the case IM = 0, this

is the same as LA/I(M) by the above remark.

Corollary 1.4. (1) P is a prime ideal in A if and only if A/P is a domain;

(2) (0) is a prime ideal if and only if A is a domain;

(3) Let R ⊆ S. If S is a domain then so is R.

Proof. Simple exercise. �
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Let (P,≤) be a partially ordered set. A chain of elements in P is a sequence {ai}i∈I
such that for all i, j ∈ I either ai ≤ aj or aj ≤ ai. A subset of P , say S admits an upper

bound if ∃ x ∈ P such that x ≤ x for every x ∈ S.

Lemma 1.5. (Zorn’s Lemma) If P is a partially ordered set such that every non-empty

subset of P that is totally ordered admits an upper bound, then P has a maximal element,

i.e., ∃ x ∈ P such that if x ≤ y then x = y. In fact, for each a ∈ P , one can find a

maximal element X with a ≤ X.

Theorem 1.6. (Krull) If AM is finitely generated and L is a proper submodule of M ,

then there is a maximal proper submodule of M , say N , with L ≤ N .

Proof. We shall just sketch the main ideas. Let P = {N : N ≤ M,N 6= M,L ⊂ N} and

consider (P,⊆). Note that L ∈ P .

We need to show that every nonempty totally ordered subset of P has an upper bound.

Let {Ni}i∈I be a chain in P . Then N =
⋃
i∈I

Ni is an A-submodule of M , as it can be

checked easily. It contains L.

It is proper since M is finitely generated: If M = Ax1 + . . . + Axn and N = M ,

there exists i ∈ I containing all x1, . . . , xn, by the chain condition, which in turn leads

to Ni = M . This is impossible, so N is proper too.

Therefore, Zorn’s Lemma can be applied and we obtain a maximal proper submodule

of M containing L.

�

Corollary 1.7. Every ring has a maximal ideal.

Proposition 1.8. Let φ : A → A′ be a surjective homomorphism of rings. Then the

following are true:

(1) If m′ is a maximal ideal in A′ then m′ ∩ A = φ−1(m′) is maximal in A;

(2) If m is maximal in A and m ⊇ kerφ then φ(m) is maximal in A′.

Proof. This follows from the Correspondence Theorem for quotiens and considering A→
A

kerφ
. �

Proposition 1.9. An ideal m is maximal in A if and only if A/m is a field.

Definition 1.10. If A is a ring then the Jacobian radical of A is the intersection of all

maximal ideals in A. This is denoted by Jac(A) (or Rad(A) or J(A)).
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Definition 1.11. A local ring is a ring A with a unique maximal ideal. Sometimes

in recent literature this definition includes the Noetherian condition. In that context, a

quasi-local ring is a local ring not necessarily Noetherian. In our notes, we do not assume

that the Noetherian condition is part of the definition of a local ring.

A nonzerodivisor (NZD) on an A-module M is an element 0 6= a ∈ A with the

property that am = 0, m ∈M implies m = 0.

Let A be a domain. An A-module M is called torsion-free if am = 0, for a 6= 0, a ∈
A,m ∈M implies m = 0.

2. Krull’s Intersection Theorem

Theorem 2.1. (Krull’s Intersection Theorem) Let A be Noetherian, I ≤ A, AM finitely

generated, and take L =
∞⋂
n=1

InM . Then I · L = L.

Proof. First note that the module M is Noetherian over A. So we can find a submodule

N of M that is maximal with property that N ∩ L = IL. First we will show that there

is n such that InM ⊆ N :

Let a ∈ I and let Pi = {x ∈M : aix ∈ N} which can be easily checked that it is an A-

submodule of M . The family of {Pi} forms an ascending chain condition in M so it must

stabilize; there exists m such that Pm = Pm+1 = ..... We claim that (amM+N)∩L = IL.

Note that IL ⊂ L, IL ⊂ N ⊂ amM +n. Now let z ∈ (amM +N)∩L. Then z = amx+ y

with x ∈ M and y ∈ N and moreover z ∈ L. So, az ∈ aL ⊂ IL ⊂ N and this implies

that am+1x ∈ N , that is x ∈ Pm+1 = Pm. In conclusion amx ∈ N and this shows that

z ∈ N , since z = amx + y, y ∈ N . But N ∩ L = IL and this gives that z ∈ IL. So, our

claim is true, and in particular amM+N = N , by maximality of N and hence amM ⊆ N .

Let I = (a1, ..., ah) and mi integers, for i = 1, ..., h, such that ami
i M ⊆ N . For

n = m1 + · · ·+mr, we see that InM ⊆ N .

To finish the proof, let us remark that L ⊆ InM ⊆ N and hence L = N ∩ L = IL.

�

Lemma 2.2. Let I ≤ A, AM finitely generated by n elements. If a ∈ A such that

aM ⊆ IM , then ∃ b ∈ I such that (an + b)M = 0.

Proof. Let M =A 〈x1, ..., xn〉, with xi ∈ M . Then for every i, axi =
n∑

j=1

aijxj with

aij ∈ I. Set A = (aij) ∈ Mn(A). Note that (a · In − A) ·X = 0 where X is the column



4

vector of the xi’s, and In is the n×n identity matrix. Conclude that det(aIn−A)X = 0.

Thus det(aIn − A) ·M = 0 because if an element kills every generator of M , then it

kills M also. But, by using the definition of the determinant, we see that we can write

det(aIn −A) = an + b where b is a sum of terms each containing some aij ∈ I and hence

b belongs to I. �

Corollary 2.3. If I ≤ A, AM finitely generated and IM = M then ∃ b ∈ I such that

(1 + b)M = 0.

Proof. Set a = 1 in the above lemma. �

The following lemma is important in the study of commutative rings and is a corollary

of the statement above:

Lemma 2.4. (NAK Lemma) If M is a finitely generated module over A, I ⊆ Jac(A),

and IM = M , then M = 0.

Proof. By the Corollary above, we have that there exists b ∈ I such that (1 + b)M = 0.

But, since I ⊆ Jac(A) =
⋂

m, where the intersection is taken over all maximal ideals m

of A, it follows that 1+b /∈ m for any m maximal ideal of A (otherwise, 1 = 1+b−b ∈ m,

for some m maximal ideal of A). Therefore 1 + b is invertible in A and so M = 0.

�

Corollary 2.5. Let A be a Noetherian domain, and AM be finitely generated and torsion

free. Take I ≤ A. Then
∞⋂
n=1

InM = 0.

Proof. First apply Krull’s theorem. Then L =
∞⋂
n=1

InM and IL = L. By the previous

corollary, ∃ b ∈ I such that (1+b)L = 0 which implies L = 0, since M is torsion-free. �

Corollary 2.6. Let A be Noetherian, I ≤ A, I ⊆ Jac (A) =
⋂

m over all maximal ideals

m of A, and AM be finitely generated. Then
∞⋂
n=1

InM = 0.

Proof. As before, proceed to L =
∞⋂
n=1

InM and (1 + b)L = 0 for some b ∈ I. Note that

1 + b is a unit in A because 1 + b is not in any maximal ideal of A. Thus L = 0. �


