LECTURE 19

1. Properties of completion; Artin-Rees lemma

It is helpful to note that any element of \(\hat{A}^I \) is given by a sequence \(\{x_n\} \) such that
\[x_{n+1} - x_n \in I^n. \]
Hence we can find \(a_{n+1} \in I^n \) for all \(n \geq 0 \) such that
\[x_n = a_1 + \cdots + a_n \]
for all \(n \geq 1 \).

It can easily be checked that if \(A = R[x_1, \ldots, X_n] \) is a polynomial ring over a ring \(R \),
and \(I = (X_1, \ldots, X_n) \), then \(\hat{A}^I = R[[X_1, \ldots, X_n]] \).

Proposition 1.1. Let \(A, B \) be two rings and let \(I \) be an ideal of \(A \), respectively \(J \) be an ideal of \(B \). Consider \(f : A \to B \) be a ring homomorphism such that \(f(I) \subset J \). Then there is a canonical ring homomorphism \(\hat{f} : \hat{A}^I \to \hat{B}^J \).

Moreover, if \(f \) is surjective such that \(f(I) = J \), then \(\hat{f} \) is surjective.

Proof. We have natural maps \(A/I^n \to B/J^n \), so \(\lim \rightarrow A/I^n \to B/J^n \) for all \(n \) which
implies, by applying the universal property of the inverse limit, the first part.

For the second part, consider a sequence of elements in \(B \), say \(\{b_n\} \) such that \(b_{n+1} \in J^n \),
\[y_n = b_1 + \cdots + b_n \] and let \(\{y_n\}_n \) give an elements in \(\hat{B}^J \). But \(I^n \) maps onto \(J^n \) via \(f \), so
we can find a sequence of elements \(a_{n+1} \in I^n \) mappint onto \(b_{n+1} \). Set \(x_n = a_1 + \cdots + a_n \),
for \(n \geq 1 \). Then \(\{x_n\}_n \) gives an element in \(\hat{A}^I \) that maps onto the element corresponding
to \(\{y_n\}_n \) in \(\hat{B}^J \). \(\square \)

Corollary 1.2. If \(A \) is Noetherian and \(I = (r_1, \ldots, r_n) \subset A \), then \(\hat{A}^I \) is Noetherian.

Remark 1.3. In fact, we hane \(\hat{A}^I = \frac{A[[X_1, \ldots, X_n]]}{(X_i - r_i, \ldots, X_n - r_n)} \). This fact will be proved later.

Proof. Indeed, let \(I = (r_1, \ldots, r_n) \). Map \(R[[X_1, \ldots, X_n]] \) onto \(A \) by sending \(X_i \to r_i \).
This maps \((X_1, \ldots, X_n) \) onto \(I \) and hence we obtain \(\hat{A}^I \) as a quotient of the Noetherian
ring \(A[[X_1, \ldots, X_n]] \). \(\square \)
Theorem 1.4. Let A be a ring and I and ideal of A. Let $\pi : \hat{A}^I \to A/I$ the natural projection. Then $\text{Ker}(\pi) \subseteq \text{Jac}(\hat{A}^I)$. This implies that there is a one-to-one correspondence between the maximal ideals in \hat{A}^I and the maximal ideal of A/I. In particular, the completion of a local ring (A, \mathfrak{m}) at its maximal ideal is a local ring as well.

Proof. Let $\{x_n\}$ an element x of \hat{A}^I that belongs to $\text{Ker}(\pi)$: $x_n \in I$ for all n. We will show that $1 + x$ is invertible in \hat{A}^I. Consider $y_n = \sum_{i=0}^{n+1} (-1)^i x_n^i$. It is clear that y_n define a Cauchy sequence in A which therefore gives an element y of the completion. But then $z_n = 1 - (1 + x_n)y_n = x_n^{n+2} \in I^{n+2}$. This implies that $\{z_n\}_n$ is 0 in \hat{A}^I and then $1 = (1 + x)y$ in \hat{A}^I. □

Definition 1.5. Let A be a ring, I an ideal of A and M an A-module. We say that a sequence of elements $\{x_n\}_n$ in M is Cauchy in the I-adic topology if for all n there exists N such that $x_i - x_j \in I^n M$ for all $i, j \geq N$. A sequence $\{x_n\}_n$ of elements from M converges to 0 if for all n there exists N such that $x_i \in I^n M$ for all $i \geq N$. A sequence $\{x_n\}_n$ converges to an element $x \in M$ such that $\{x_n - x\}_n$ converges to zero in M. We say that M is complete in the I-adic topology if every Cauchy sequence in M converges to an element in M. We say that M is I-adically separated if $\cap_{n=1}^{\infty} I^n M = 0$.

Definition 1.6. The I-adic completion of M is $\hat{M}^I : \varprojlim M/I^n M$. It can be checked that \hat{M}^I is a \hat{A}^I-module and there exists a natural A-module homomorphism $M \to \hat{M}^I$ with kernel $\cap_n I^n M$.

We say that a filtration of submodules of M say $\{N_n\}$ is cofinal with the filtration $\{I^n M\}$ if for all n there exists m such that $N_m \subseteq I^n M$ and for all t there exists s such that $I^s M \subseteq N_t$. It can be checked that $\varprojlim M/N_n \simeq \varprojlim M/I^n M$ (in fact, the filtrations define the same linear topology on M).

Moreover, we can see that a Cauchy sequence and a subsequence of it define the same element in \hat{M}^I, so we assume that every element $m \in \hat{M}$ is defined by a sequence $\{m_n\}$ such that $m_{n+1} - m_n \in I^n$. Therefore there exists $z_{n+1} \in I^n$ such that for $y_n = z_0 + \ldots + z_n$ we have that $\{y_n\}_n$ gives m.

Proposition 1.7. Let A be a ring, I an ideal of A. Then

1. Any A-linear map $f : M \to N$ of A-modules induces an \hat{A}^I-linear map $\hat{f} : \hat{M}^I \to \hat{N}^I$. Moreover, f surjective implies that \hat{f} is surjective.
(2) There exists a natural isomorphism of \(\hat{A}^I \)-modules \(\hat{M}^I \oplus \hat{N}^I \simeq \hat{M}^I \oplus \hat{N}^I \), for any two \(A \)-modules \(M, N \).

(3) The multiplication by an element \(M \overset{a}{\to} N \) defines a natural map \(\hat{A}^I \)-linear map \(\hat{M}^I \to \hat{N}^I \) given by the multiplication by the image of \(a \in \hat{A}^I \).

Proof. The proof of the first part follows the ring case mutatis mutandis. The last two parts are straightforward \(\square \)

Let \(N \subset M \) be a pair of \(A \)-modules. In what follows we need to compare the \(I \)-adic topology on \(N \) with the topology induced by the \(I \)-adic topology on \(M \) restricted to \(N \). In essence we will show that \(\lim \underset{\leftarrow}{\text{N}}/I^n M \cap N = \hat{N}^I \). To prove this we need to develop some considerations on filtrations of modules and in fact we will be proving a statement that is more general.

Definition 1.8. Let \(M \) be an \(A \)-module and \(I \) an ideal of \(A \). Let \(\mathcal{M} = \{M_n\}_n \) be a filtration of submodules of \(M \), i.e. \(M_{n+1} \subset M_n \) and \(M_0 = M \). We say that \(\mathcal{M} \) is an \(I \)-filtration if \(IM_n \subset M_{n+1} \) for all \(n \geq 0 \). The filtration \(\mathcal{M} \) is called \(I \)-stable if \(I^n M_m = M_{n+1} \) for \(n \gg 0 \).

An example of an \(I \)-stable filtration is the one given by \(\{I^n M\}_n \). The case of \(M = A \) is particularly important because we can associate the following object to the filtration \(\{I^n\}_n \): \(gr_I(A) := I^n/I^{n+1} \) which is an \(A \)-module naturally. In fact this object, which is called the *associated graded ring* with respect to the ideal \(I \) is a ring with multiplication defined as follows: \(\overline{ab} = \overline{a} \overline{b} \) for any two elements \(a \in I^n, b \in I^m \). It can be checked that this is well-defined and that it extends via distributivity to a multiplication on \(gr_I(A) \).

Now consider an \(I \)-filtration \(\mathcal{M} \). We can define the following \(A \)-module \(gr_{\mathcal{M}}(M) : = \bigoplus_{n \geq 0} M_n/M_{n+1} \). An important feature of it is that this object is in fact an \(gr_I(A) \)-module. For \(\overline{a} \in I^n/I^{n+1} \) and \(\overline{m} \in M_k/M_{k+1} \), we let \(\overline{am} : = \overline{a} \overline{m} \in M_{n+k}/M_{n+k+1} \). It can be checked that definition is well-defined. By distributivity, we can extend this to a scalar multiplication on \(gr_{\mathcal{M}}(M) \) with elements from \(gr_I(A) \) and we call it the *associated graded module* of \(M \) with respect to \(\mathcal{M} \).

Proposition 1.9. Let \(A \) be a ring, \(I \) be an ideal of \(A \), \(M \) be an \(A \)-module, and \(\mathcal{M} \) be an \(I \)-filtration on \(M \). Then
(1) If $A[It]$ is a finitely generated A-algebra, if I is a finitely generated ideal.

(2) If $A[It]/IA[It] \simeq gr_I(A)$ as A-algebras.

Proof. For (1), let $I = (a_1, \ldots, a_r)$. Then $A[X_1, \ldots, x_n]$ maps onto $A[It]$ under $X_i \mapsto a_i$.

For (2), let $A[It] \to gr_I(A)$ that sends $a \in I/I^2$, for any $a \in I$. It can be easily check that this is an well-defined A-algebra homomorphism with kernel equal to $IA[It]$.

\[\square\]

Proposition 1.10. Let A be a ring, I be an ideal of A, M be a finitely generated module over A, and \mathcal{M} be an I-stable filtration on M composed of finitely generated submodules.

Then $gr_{\mathcal{M}}(M)$ is a finitely generated module over $gr_I(A)$.

Proof. Since the filtration is I-stable so $I^k M_N = M_{N+k}$ for some $N \geq 0$ and all $k \geq 0$. Therefore $\frac{M_n}{M_{n+1}} = \frac{M_{n+1}}{M_{n+2}}$, for all $n \geq N$.

This shows that $gr_{\mathcal{M}}(M)$ is generated by the union of all the generators of M_n/M_{n+1} for $n \leq N$. This is a finite set which proves the claim. \[\square\]

Definition 1.11. Let I be an ideal in A. The A-algebra $R_I(A) = A[It] \subset A[t]$ is called the Rees algebra, or the blowup algebra, of A with respect to I.

Note that $A[It] = \oplus_{n \geq 0} I^n$.

Similarly, for an I-filtration \mathcal{M} on an A-module M, we can define the Rees module of M with respect to \mathcal{M} by $R_{\mathcal{M}}(M) := \oplus_{n \geq 0} M_n t^n = \oplus_{n \geq 0} M_n$. Note that $R_{\mathcal{M}}(M)$ is a module over $A[It]$ in a natural way.

Theorem 1.12. Let A be a ring, I be an ideal of A, M be an A-module with I-filtration \mathcal{M} consisting of finitely generated A-submodules of M. Then the filtration \mathcal{M} is I-stable if and only if $R_{\mathcal{M}}(M)$ is a finitely generated $A[It]$-module.

Proof. If \mathcal{M} is I-stable, then $M_{N+k} = I^k M_N$ for some $N \geq 0$ and for all $k \geq 0$. Then $R_{\mathcal{M}}(M)$ is finitely generated by the union of the generators of M_i, with $I \leq N$.

If $R_{\mathcal{M}}(M)$ is finitely generated over $A[It]$, there exists $N \geq 0$ such that all generators belong to the union of M_i, $i \leq N$. But $\oplus_{k \geq 0} M_{N+k}$ is finitely generated as an $A[It]$-module (since it is a homomorphic image of $R_{\mathcal{M}}(M)$). Using this and the fact that \mathcal{M} is an I-filtration we derive that $I^k M_N = M_{N+k}$, for all $k \geq 0$. \[\square\]
Corollary 1.13 (Artin-Rees Lemma). Let M be a finitely generated A-module, where A is Noetherian. Assume that I is an ideal of A and let N an A-submodule of M.

1. Let \mathcal{M} be an I-stable filtration on M. Then $\{M_n \cap N\}_n$ is an I-stable filtration on N.

2. The filtration $\{I^n M \cap N\}_n$ is I-stable that is there exists $c > 0$ such that

$$I^n M \cap N = I^{n-c}(I^c M \cap N),$$

for all $n \geq c$.

Proof. It suffices to prove (1). Let \mathcal{M}' the filtration with terms $I^n M \cap N$. Clearly $R_{\mathcal{M}'}(N)$ is an $A[It]$-submodule of $R_{\mathcal{M}}(M)$.

Note that $A[It]$ is a Noetherian A-algebra and $R_{\mathcal{M}}(M)$ is a finitely generated $A[It]$-module by Theorem 1.12. So, $R_{\mathcal{M}'}(N)$ is a finitely generated $A[It]$-module, hence by Theorem 1.12 we get that \mathcal{M}' is I-stable on N.

Proof. To be included later.

Theorem 1.14. Let A be a Noetherian ring and I an ideal of A.

1. If $0 \to N \to M \to P \to 0$ is a short exact sequence of finitely generated A-modules then

$$0 \to \hat{N}^I \to \hat{M}^I \to \hat{P}^I \to 0$$

is a short exact sequence of \hat{A}^I-modules.

2. The universal property of the tensor product implies that there is a natural \hat{A}^I-map $\hat{A}^I \otimes_A M \to \hat{M}^I$ for any A-module M. For every finitely generated A-module M, $\hat{A}^I \otimes_A M \simeq \hat{M}^I$ is an isomorphism.

3. \hat{A}^I is a flat A-algebras which is faithfully flat if (A, \mathfrak{m}) is a local ring.

Proof. To be included later.