Chapter 1: Lecture 5

If A is a ring and M an A-module we let

$$\mathcal{L}_A(M) = \{ N \subseteq M : N \text{ is an } A - \text{submodule of } M \}.$$

Let N be an A-submodule of M. We refer to it as proper if $N \neq M$. If $N = 0$ or M, then we say that N is trivial.

Theorem 0.1 (Krull). If A is finitely generated and L is a proper submodule of M, then there is a maximal proper submodule of M, say N, with $L \leq N$.

Proof. Let $P = \mathcal{L}_A(M) \setminus \{ M \}$ and consider (P, \subseteq) which is a partially ordered set. We need to show that every nonempty totally ordered subset of P has an upper bound. We intend to use Zorn’s Lemma so it suffices to show this is true for chains.

Let $N_1 \leq N_2 \leq \cdots$ be a chain in P. Then $N = \bigcup_{i=1}^{\infty} N_i$ is an A-submodule of M which is the desired upper bound. It is proper: if $N = M$, then, since M is finitely generated, say by x_1, \ldots, x_r, and P is a chain, then there exists N_i such that x_1, \ldots, x_r are all contained in N_i. But this forces $N_i = M$ which is not the case.

So, Zorn’s Lemma can be applied and the statement of the theorem follows.

□

Definition 0.2. Let M be an A-module. We call M simple if it does not contain nontrivial A-submodules.

It is clear that if M is simple then, for each $x \neq 0$ in M, the A-submodule Ax must equal M. Also, a simple A-module M satisfies both the DCC and ACC conditions in trivial fashion. Let M be an arbitrary A-module. Let $N, N' \in \mathcal{L}_A(M)$, with $N \subseteq N'$. By the Correspondence Theorem for quotients, N'/N is A-simple if and only if there are no submodules $K \in \mathcal{L}_A(M)$ such that $N \subsetneq K \subsetneq N'$.

With this observation, we remark that under the notations and hypotheses of the above Theorem, the module M/N is A-simple.

Also, if M happens to contain a minimal nonzero submodule N, then N is A-simple. We can always pick such a submodule if M is Artinian over A.

1
Finally, let S A-simple, and $x \neq 0$ an element of A. Since $S = Ax$, then the map $A \to Ax$ that sends a to ax gives that $A/\text{Ann}(x) \simeq Ax = S$. Therefore, S simple is equivalent to the condition that $\text{Ann}(x)$ is a maximal ideal of A.

Definition 0.3. Let M be an A-module. An ascending filtration of M is a family of submodules $\{M_i\}$ such that $M_i \subseteq M_{i+1}$. The A-modules M_{i+1}/M_i are called the factors of the filtration. In similar fashion, one can define descending filtrations. Filtrations can be finite or infinite. Obviously, any ascending filtration can be renumbered to become a descending filtration, and conversely.

Definition 0.4. Consider $_A M$. Then M is said to be of **finite length** over A if there is a chain of A-submodules

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$$

such that $\frac{M_i}{M_{i-1}}$ is A-simple for every i.

Such a chain will be called a composition series of length n for M, and $\frac{M_i}{M_{i-1}}, i = 1, \ldots, n$, are its factors.

Proposition 0.5. Let A be a ring and $_A M$ a module. Then $_A M$ is of finite length if and only if M is Artinian and Noetherian.

Proof. First assume that M is of finite length and let $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$ be a chain of submodules such that $\frac{M_i}{M_{i-1}}$ are A-simple for every i, i.e., each one has no proper submodules.

If S is a simple module over A, then S is Noetherian and Artinian. This remark applies to all the factors of the composition series.

Consider

$$0 \to M_i \to M_{i+1} \to M_{i+1}/M_i \to 0.$$

Using the behavior of Noetherian/Artinian modules on short exact sequences, we can show by induction on i that every M_i is Noetherian and so $M = M_n$ is Noetherian.

Conversely, let us take M Artinian and Noetherian and $M_0 = 0$. Let M_1 minimal among the nonzero submodules of M. If $M_1 \neq M$, let M_2 minimal among the submodules of M strictly containing M_1 and so on. For all these steps we use that M is Artinian. We have an ascending chain of submodules $\{M_i\}$ and clearly M_{i+1}/M_i are all simple submodules. M is Noetherian and hence the chain must stabilize. By construction it must stabilize at $M_n = M$, for some n, and this shows that M is of finite length. \square
We plan to prove that all composition series of a finite length module have the same length. We will do so by proving a stronger statement on composition series. For this, we first need a lemma.

Lemma 0.6. Let \(\Lambda M \) a module and \(E, F, G \in \mathcal{L}_A(M) \) such that \(E \subsetneq F \) and \(F/E \) is \(A \)-simple. Then \(\frac{F \cap G}{E \cap G} \) is either zero or \(A \)-simple.

Proof. The natural projection \(F \to F/E \) induces, by restriction, an \(A \)-linear map \(F \cap G \to F/E \). The kernel of this map equals \(E \cap G \).

Hence \(\frac{F \cap G}{E \cap G} \) injects into \(\frac{F}{E} \). Therefore the image is either zero or the entire \(\frac{F}{E} \) since this is an simple \(A \)-module. \(\square \)

Theorem 0.7 (Jordan-Hölder). Let \(\Lambda M \) be a module with two finite composition series:

\[
0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M
\]

and

\[
0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_m = M.
\]

Then \(m = n \) and there exists a permutation \(\sigma \in S_n \) such that \(M_{i+1}/M_i \simeq N_{\sigma(i)+1}/N_{\sigma(i)} \) for all \(i = 0, \ldots, n - 1 \).

Proof. If \(M \) is simple then the statement is immediately true. Let us assume that the statement is true for all \(A \)-modules that admit at least one composition series of length \(n - 1 \).

Consider the filtration:

\[
0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_n \cap N_{m-1} = N_{m-1}.
\]

Its factors are either zero or simple by Lemma 0.6. So the induction hypothesis applies to \(N_{m-1} \).

Note that we also have the following filtration

\[
0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_{n-1}.
\]

Its factors are either zero or simple by Lemma 0.6 except possibly the last factor. The induction hypothesis applies to \(M_{m-1} \) as well.
Case A: If $M_{n-1} = N_{m-1}$ then it follows that $n - 1 = m - 1$ and $M_{i+1}/M_i \simeq N_{\sigma(i)+1}/N_{\sigma(i)}$ for all $i = 0, \ldots, n - 2$ and some $\sigma \in S_{n-1}$. Note that $M/M_{n-1} = M/N_{n-1}$. Putting this together gets us the statement.

Case B: If $M_{n-1} \neq N_{m-1}$, since M_{n-1}, N_{m-1} are proper maximal submodules of M we see that $M_{n-1} + N_{m-1} = M$.

Note that by using the third isomorphism theorem for modules

\[
\frac{M}{N_{m-1}} = \frac{M_{n-1} + N_{m-1}}{N_{m-1}} \simeq \frac{M_{n-1}}{M_{n-1} \cap N_{m-1}}.
\]

Therefore $\frac{M_{n-1}}{M_{n-1} \cap N_{m-1}}$ is A-simple as well. This guarantees that

\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_{n-1}\]

is a composition series of M_{n-1} after removing the redundant terms corresponding to possible zero factors.

Now note that by the induction hypothesis M_{n-1} satisfies the statement of the theorem, and hence all its composition series must have length $n - 1$. So, in fact, exactly one term is redundant in the above filtration. After removing this factor we obtain as a consequence that

\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_{n-1} \subseteq M\]

is a composition series of length $n - 2$ and completing it at the end with N_{m-1} we obtain a composition series for N_{m-1} of length $n - 1$. But the induction hypothesis applied to N_{m-1} shows that all its composition series must have length $m - 1$, so $n - 1 = m - 1$ or $n = m$.

For the remaining part the reader should keep in mind that $n = m$.

Let us also note that

\[
\frac{M}{M_{n-1}} = \frac{M_{n-1} + N_{m-1}}{M_{n-1}} \simeq \frac{N_{m-1}}{M_{n-1} \cap N_{m-1}}.
\]

This (and the similar isomorphism proved earlier) allows us to conclude that the two resulting composition series

\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_{n-1} \subseteq M_n = M\]

and
\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq N_{m-1} \subseteq N_m = M \]

have the same factors up to a permutation.

But

\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq M_{n-1} \subseteq M_n = M \]

has the same factors, up to a permutation, as

\[0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{n-1} \subseteq M_n = M \]

by Case A which was already considered.

Similarly

\[0 = M_0 \cap N_{m-1} \subseteq M_1 \cap N_{m-1} \subseteq \cdots \subseteq M_{n-1} \cap N_{m-1} \subseteq N_{m-1} \subset N_m = M \]

has the same factors, up to a permutation, as

\[0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_{m-1} \subseteq N_m = M. \]

Putting all these together we get our statement.

Example 0.8. Let \(A = \frac{k[x]}{(x^3)} \). The chain of ideals \(0 \subset (x^2) \subset (x) \subset A \) is a composition series for \(A \) as an \(A \)-module.

Definition 0.9. For an \(A \)-module \(M \) of finite length, the length of any composition series is call the length of \(M \). It is denoted by \(\lambda_A(M) \) or, simply, \(\lambda(M) \).

An important result is that the length function behave nicely on short exact sequences of finite length modules.

Proposition 0.10. Let \(0 \to N \to M \to K \to 0 \) be a short exact sequence of \(A \)-modules of finite length. Then

\[\lambda(M) = \lambda(N) + \lambda(K). \]

Proof. We can consider that \(N \) is a submodule of \(M \) and note that \(K \simeq M/N \). Hence any composition series of \(K \) can be lifted back to \(M \) resulting in a filtration of \(N \subseteq M \) with \(A \)-simple
factors. We can concatenate it to a composition series for N and obtain a composition series for M. Counting the numbers of factors gives the statement of the Proposition.

\[\square\]

A few corollaries can be obtained readily.

Corollary 0.11. Let M_i be A-modules, $i = 1, \ldots, n$, of finite length.

Then $M = \oplus_{i=1}^n M_i$ is of finite length over A and $\lambda(M) = \sum_{i=1}^n \lambda(M_i)$.

Proof. Consider the following short exact sequences for $k = 2, \ldots, n$:

\[
0 \to \oplus_{i=1}^{k-1} kM_i \to \oplus_{i=1}^k M_i \to M_k.
\]

Apply Propositions 0.5 and 0.10 to get the result. \[\square\]

Theorem 0.12. Let A be an Artinian ring and M and finitely generated A-module. Then M has finite length over A.

Proof. We will prove this by induction on the number of generators of M.

If M is cyclic then $M = Ax$, $x \in M$ and then $M \simeq A/I$, where $I = \text{Ann}(x)$. Since A is Artinian and Noetherian it follows that A is of finite length over A. Hence A/I is of finite length over A which proves that M is of finite length as well.

Now, let $x_1, \ldots, x_{n-1}, x_n$ be generators for M, where $n > 1$. Then let $N = Rx_1 + \cdots + Rx_{n-1}$ and consider

\[
0 \to N \to M \to M/N \to 0.
\]

Remark that the image of x_n in M/N generates M/N. Since $N, M/N$ are both of finite length by the induction hypothesis, we can conclude that M is of finite length.

\[\square\]