Homework-Assignment 7 Name: _________________________________
Write-up your solution carefully including all the details of the proof. Due Wednesday November 11.

(1) (5 points) Prove that if \(f : G \to H \) is a group homomorphism such that \((|G|, |H|) = 1\), then \(f(x) = 1' \) for all \(x \in G \), where \(1' \) is the identity element of \(H \).

(2) (5 points) Prove that \(f : G \to G \) \(f(a) = a^{-1} \) is a group homomorphism if and only if \(G \) abelian.

(3) (5 points) Let \(H \) be a subgroup of \(G \) of index 2. Prove that \(g^2 \in H \), for all \(g \in G \).

(4) (5 points) Prove that if \(f : G \to G' \) is a homomorphism and let \(a \in G \) such that \(\text{ord}(a) = n \). Prove that \(\text{ord}(f(a)) \) divides \(n \).

(5) (5 points) (for graduate students only) If \(A, B \) are subgroups of \(G \) such that \(b^{-1}Ab \subseteq A \) for all \(b \in B \), then \(AB \) is a subgroup of \(G \).