1. Stable polynomials. Gauss-Lucas Theorem

We continue by proving in detail the theorem that closed Lecture 7.

Theorem 1.1. With the notations just introduced, if \(f \) has real coefficients then \(f \) is stable (i.e., all roots have negative real part) if and only if \(f \) and \(g \) have positive coefficients.

Proof. Suppose that \(f \) is stable. Then it can easily be shown that \(f, g \) have real coefficients:

Since \(f(z) = (z - z_1) \cdots (z - z_n) \), then if \(z_i \) is real and negative that the factor \(z - z_i \) has positive coefficients. If \(z_i \) is complex, not real, then its conjugate \(\overline{z} \) is a root as well (check this), so \(f \) has \((z - z_i)(z - \overline{z}) \) as a factor. But \((z - z_i)(z - \overline{z}) = z^2 - 2Re(z_i) + |z_i|^2 \) has only positive coefficients, as \(Re(z_i) < 0 \).

In conclusion, \(f \) is the product of polynomials with positive coefficients, so it has positive coefficients as well.

We can repeat the argument for \(g \), since \(g \) is also a stable polynomial as its roots are sums of roots of \(f \), which means that they will have negative real parts as well. We need to make sure that \(g \) has real coefficients as well. For every root of \(f \), its conjugate is also a root. Hence for every root of \(g \), say \(z_i + z_j \), its conjugate \(\overline{z_i} + \overline{z_j} = z_i + z_j \) is also a root of \(g \). Hence we can pair up a complex nonreal root \(w \) of \(g \) with its conjugate and note that \(g \) must be a product of terms of the form \((z - w)(z - \overline{w}) = z^2 - 2Re(w)z + |w|^2 \), which have real coefficients, and terms of the form \(z - \alpha \), \(\alpha \) real, which also have real positive coefficients.

For the converse, if a polynomial has positive coefficients then it is clear that its real roots must be negative. This shows that \(f \) has negative real roots. For a complex root of \(f \), \(z = a + ib \), we see that \(\overline{z} = a - ib \) is a real root as well, so \(z + \overline{z} = 2a \) must be a REAL root of \(g \). But \(g \) has positive coefficients so \(2a \) must be negative, so \(a \) is negative, hence the real part of \(z \) is negative. This shows that \(f \) is stable.

\[\square \]

Example 1.2. Let \(f = z^2 + z + 2 \). Let us compute \(g \). It has degree 1 and root \(z_1 + z_2 \) where \(z_1, z_2 \) are roots of \(f \).

Note that Viète’s relations tell us that \(z_1 + z_2 = -1 \), so \(g(z) = z - (-1) = z + 1 \).

As we can see the above Theorem applies and \(f \) is stable.

In fact, one should notice that the coefficients of \(g \) are symmetric polynomials in \(z_1, ..., z_n \). Therefore the coefficients of \(g \) become polynomials in the coefficients of \(f \), after using the Viète’s relations.

Now, let us go back to the equation

\[P(z)y'' + Q(z)y' + R(z)y = 0, \]

where \(P, Q, R \) are polynomials.

The following result was stated in lecture 7 without a proof, so we will provide a proof now.

But first, let us revisit the concept of multiplicity of a root for a polynomial.

Proposition 1.3. Let \(f(z) \) be a polynomial. Then \(z_0 \) is a root of multiplicity \(k \) if and only if \(f^{(i)}(z_0) = 0 \) for \(i \leq k - 1 \) and \(f^{(k)}(z_0) \neq 0 \), where \(f^{(i)}(z) \) stands for the \(k \)th order derivative of \(f \).
Proof. Let \(g(z) = f(z + z_0) \). Note that \(g(0) = 0 \).

Also, \(g^{(i)}(z) = f^{(i)}(z + z_0) \).

Moreover \(f(z) = (z - z_0)^k h(z) \) is equivalent to \(g(z) = z^k h(z + z_0) \) and of course \(h(z_0) \neq 0 \) is equivalent to \(h(0 + z_0) \neq 0 \). This says that 0 is a root of multiplicity \(k \) for \(g \) if and only if \(z_0 \) is root of multiplicity \(k \) for \(f \).

First let us assume that \(z_0 \) is root of multiplicity \(k \) for \(f \). Hence as we have see above, 0 is root of multiplicity \(k \) for \(g \) and \(g(z) = z^k p(z) \) where \(p \) is such that \(p(0) \neq 0 \).

So, \(g(z) = az^k + \ldots, a \neq 0 \) and it can be easily checked that \(g^{(i)}(0) = 0 \) for \(i \leq k \), and \(g^{(k+1)}(0) \neq 0 \). As remarked before, this is equivalent to \(f^{(i)}(z_0) = 0 \) for \(i \leq k-1 \) and \(f^{(k)}(z_0) \neq 0 \).

Now, let us assume that \(f^{(i)}(z_0) = 0 \) for \(i \leq k-1 \) and \(f^{(k)}(z_0) \neq 0 \), that is \(g^{(i)}(0) = 0 \) for \(i \leq k - 1 \), and \(g^{(k)}(0) \neq 0 \).

Let \(g(z) = a_0 + a_1 z + \ldots \).

But \(g(0) = 0 \) implies \(a_0 = 0 \). \(g'(0) = a_1 \) so this means that \(a_1 = 0 \). Similarly, \(g''(0) = 2a_2 \) and hence \(a_2 = 0 \).

Note that \(g^{(k)}(0) = k!a_k \), so \(a_k \neq 0 \).

So, we can write \(g(z) = a_k z^k + \ldots = z^k p(z) \), where \(p \) is a polynomial such that \(p(0) \neq 0 \). Hence \(g \) has 0 as a root of multiplicity \(k \), and therefore \(z_0 \) is root of multiplicity \(k \) for \(f \).

\[\square \]

Proposition 1.4. The polynomial solutions of

\[P(z)y'' + Q(z)y' + R(z)y = 0, \]

have only simple zeroes.

Proof. Assume that \(z_0 \) is a multiple zeroes for \(y \). Let us say that its multiplicity is \(k > 1 \).

Case 1: \(P(z_0) \neq 0 \).

Then by taking the derivative of

\[P(z)y'' + Q(z)y' + R(z)y = 0, \]

\(k - 2 \) times we get \(P(z)y^{(k)}(z) + F(z) = 0 \) where \(F \) is an expression in the derivatives of \(y \) of order less or equal to \(k - 1 \). (If \(k = 1 \), there not need to take derivatives). When we plug in \(z = z_0 \) we get \(P(z_0)y^{(k)}(z_0) = 0 \) so \(y(z_0) = 0 \) which contradicts the fact \(z_0 \) has multiplicity exactly \(k \).

Case 2: \(P(z_0) = 0 \).

Take the derivative of

\[P(z)y'' + Q(z)y' + R(z)y = 0, \]

and get

\[P'(z)y'' + Py'''(z) + Q(z)y'' + Q'(z)y' + R'(z)y + R(z)y' = 0. \]

Now, remark that \(R' \equiv 0 \) (since \(R \) is a constant) and \(P \) has only simple roots, for \(P, R \) polynomials defining the Hermite, Laguerre, Legendre polynomials.

We either have \(P'(z_0) + Q(z_0) \neq 0 \), or \(Q'(z_0) + R' \neq 0 \). As in case 1, take the \(k - 2 \) or \(k - 1 \) derivatives of the newly found expression and note that one gets

\[H(z)y^{(k)}(z) + F = 0 \]
where F is an expression depending upon P and the derivatives of y of order less or equal to $k - 1$ such that $y^{(i)} = 0, \forall i \leq k - 1$ implies that $F = 0$. Here $H(z_0) \neq 0$. (Again, as before, there is no need to take derivatives if $k = 1$.)

When we plug in $z = z_0$ we see that $y^{(i)}(z_0) = 0$, for all $i \leq k - 1$, so we get $H(z_0)y^{(k)}(z_0) = 0$, as $F(z_0)$ vanishes. So, $y^{(k)}(z_0) = 0$, contradicting again the fact that the multiplicity of y is k.

Hence $k = 1$ is the only possibility so z_0 is a simple root for y.

\[\Box\]