Write-up your solution carefully including all the details of the proof. Due Tuesday September 21.

Please staple your assignment.

1. (5 points) Solve \(x^3 - x + 1 = 0 \).

2. (5 points) Solve \(x^4 = -4 \) by using the general method of solving equations of degree 4.

3. (5 points) For all complex numbers \(z \neq 0 \) show that
\[
\frac{z}{|z|} + \frac{|z|}{z}
\]
is a real number.

4. (5 points) Let \(f(x) = kX^k - X^{k-1} - X^{k-2} - \ldots - X - 1 \), where \(k \geq 1 \) integer. Show that the roots of \(f \) have the absolute value less or equal to 1.

5. (5 points)(graduate students) Show that for all positive integers \(n \) the real roots of the following equation:
\[
x^{2n+1} - x^{2n} + x^{2n-1} + 2nx^n - n^2 = 0
\]
are positive.