(1) (5 points) Let R be a ring and M be a left R-module and $m \in M$. Prove that $\text{Ann}(M) = \{ r : rM = 0 \}$ is a two-sided ideal and $\text{Ann}(m) = \{ r : r \cdot m = 0 \}$ is a left ideal in R.

(2) (5 points) Let M be a left R-module. Compute $\text{Hom}_R(R, M)$. Compute $\text{Hom}_\mathbb{Z}(\mathbb{Z}^2, \mathbb{Z})$.

Proof. Let $f \in \text{Hom}_R(R, M)$. Then $f(r) = f(r \cdot 1) = rf(1)$, for all $r \in R$. So f is completely determined by $f(1)$.

Now one can show that the map $T : \text{Hom}_R(R, M) \to M$, $T(f) = f(1)$ is an isomorphism of R-modules.

Note that if $(x, y) \in \mathbb{Z}^2$ then $(x, y) = x(1, 0) + y(0, 1)$.

So, if $f \in \text{Hom}_\mathbb{Z}(\mathbb{Z}^2, \mathbb{Z})$, then $f(x, y) = xf(1, 0) + yf(0, 1)$ and f is hence completely determined by the pair of numbers $f(1, 0), f(0, 1)$.

Therefore, let us define $T : \text{Hom}_\mathbb{Z}(\mathbb{Z}^2, \mathbb{Z}) \to \mathbb{Z}^2$, by $T(f) = (f(1, 0), f(0, 1))$.

One can now prove that T is \mathbb{Z}-linear, 1-1 and onto.

□

(3) (5 points) Compute $\text{Hom}_\mathbb{Z}(\mathbb{Z}_m, \mathbb{Z}_n)$.

(4) (5 points) Let K, N, L be R-modules such that $K \oplus N = K \oplus L$ as R-modules, Show that $N \simeq L$.

Proof. Let $i : N \to K \oplus N, i(n) = (0, n)$ be the inclusion map which is R-linear.

Let $\pi : K \oplus L \to L, \pi(k, l) = l$, the natural projection which is also R-linear.

Using the fact that $K \oplus N = K \oplus L$, we can write $f = \pi i : N \to L$.

Note that f is R-linear since it is the composition of two R-linear maps.

Let $f(n) = (0, n)$ with $k \in K$. So, $n = k = 0$. This shows that the kernel of f is zero, so f is 1 − 1.

Let $l \in L$. Then $(0, l) \in K \oplus N$, so $(0, l) = (k, n)$ for some $k \in K$, $n \in N$. But then $(0, n) = (−k, l)$.

Therefore $f(0, n) = l$, and f is therefore onto.

□

(5) (5 points) Let I be a left ideal of a ring R such that R/I is isomorphic to R as R-module. Show that $I = Re$ where e is idempotent (i.e., $e^2 = e$).

These three problems will count as extra-credit. Each of them is worth 2 points.

(6) Show that \mathbb{Q} is isomorphic to $\text{End}_\mathbb{Z}(\mathbb{Q})$ as rings.

(7) Prove that \mathbb{Q} is not free as \mathbb{Z}-modules.

(8) Let R be a ring. Prove that if R is completely reducible R-module then every R-module is completely reducible.