k-critical structures in k-Ore graphs

Victor Larsen

Given two graphs G_1, G_2 with edges $x_1y_1 \in E(G_1)$ and $x_2y_2 \in E(G_2)$ the Hajós construction forms a new graph G by deleting x_1y_1 and x_2y_2, identifying x_1 and x_2 into a single vertex, and adding an edge y_1y_2. Starting with the complete graph K_k and using repeated applications of the Hajós construction, we can construct and infinite family of k-vertex-critical graphs; that is, graphs which are not $(k - 1)$-colorable, but for which every proper subgraph is $(k - 1)$-colorable.

The Ore construction is a generalization of the Hajós construction. The graphs constructible from K_k and repeated applications of the Ore construction are called k-Ore graphs; these graphs play an important role in answering Dirac’s question of the minimum number of edges in a k-critical graph on n vertices.

Kostochka and Yancey recently established a bound $|E(G)| \geq \left\lceil \frac{(k+1)(k-2)n-k(k-3)}{2(k-1)} \right\rceil$ for k-critical graphs on n vertices, and the k-Ore graphs show that this bound is tight. In this talk, we examine more closely some of the properties of k-Ore graphs, which will be helpful when extending the Kostochka and Yancey result. In particular, we define and bound the number of k-critical structures in k-Ore graphs.