TURÁN NUMBERS OF MULTIPLE PATHS AND EQUIBIPARTITE TREES

NEAL BUSHAW†

Abstract. The Turán number of a graph H is the maximum number of edges in any graph on n vertices which does not contain H as a subgraph. Let P_l denote a path on l vertices, and $k \cdot P_l$ denote k vertex disjoint copies of P_l. We first determine $\text{ex}(n, k \cdot P_3)$, answering in the positive a conjecture of Gorgol. Further, we determine $\text{ex}(n, k \cdot P_l)$ for arbitrary l, and n appropriately large relative to k and l. We provide a some background on the famous Erdős-Sós conjecture, and conditional on its truth we obtain tight bounds on $\text{ex}(n, H)$ when H is a forest consisting of equibipartite trees, for appropriately large n. This is joint work with Nathan Kettle at the University of Cambridge.

†DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152 USA. PH: +1 901 678 1319, Fax: +1 901 678 4481
E-mail address: nobushaw@memphis.edu

Date: September 7, 2011.
2000 Mathematics Subject Classification. Primary 05C35, 05C38.
Key words and phrases. Turán Number, Disjoint Paths, Forest, Trees.