Extremal graph theory and the signless Laplacian

Vladimir Nikiforov
University of Memphis

Given a graph G, write A for its adjacency matrix and let D be the diagonal matrix of the row-sums of A, that is to say, the degrees of G. The matrix $Q = A + D$, called the signless Laplacian or the Q-matrix of G, has received a lot of attention recently. This talk will present results about $q(G)$, the largest eigenvalue of the signless Laplacian of a graph G, when G lacks certain subgraphs.

More precisely, the general extremal problem that will be discussed is the following one: *How large can $q(G)$ be, if G is a graph of order n, with no subgraph isomorphic to a given graph F?*

When the chromatic number of F is at least 3, a tight asymptotic solution to this problem was given fairly recently. However, for bipartite graphs the problem is subtler and requires different methods. The reason is that if F is a nontrivial bipartite graph and G is a graph of order n with no subgraph isomorphic to F, then $q(G) \leq n + o(n)$, and this bound is tight.

This talk will focus on new results when F is an even cycle or a path. In particular, if G is a graph of order n, with no 4-cycle, then

$$q(G) \leq \frac{n + 2 + \sqrt{n^2 - 4n + 12}}{2}.$$

This bound is tight since equality holds for the friendship graph.