Supereulerian graphs with width s and s-collapsible graphs

Hong-Jian Lai

Abstract: For an integer $s \geq 0$ and for $u, v \in V(G)$ with $u \neq v$, an $(s; u, v)$-trail-system of G is a subgraph H consisting of s edge-disjoint (u, v)-trails. A graph is supereulerian with width s if $\forall u, v \in V(G)$ with $u \neq v$, G has a spanning $(s; u, v)$-trail-system. The supereulerian width $\mu'(G)$ of a graph G is the largest integer k such that G is supereulerian with width k for any integer s with $1 \leq s \leq k$. Thus a graph G with $\mu'(G) \geq 2$ has a spanning Eulerian subgraph. (Such graphs are called supereulerian graphs in the literature). Catlin introduced collapsible graphs together with a reduction method to study conditions for a graph to be supereulerian, and showed that every collapsible graph G satisfies $\mu'(G) \geq 2$. In this talk, we will introduce a generalization of Catlin’s reduction method and who applications to the problems of determining the supereulerian width of graphs and of determining some of the H-linked problems in line graphs.