Note on upper density of quasi-random hypergraphs

Abstract

In 1964, Erdős proved that for any \(\alpha > 0 \), an \(l \)-uniform hypergraph \(G \) with \(n \geq n_0(\alpha, l) \) vertices and \(\alpha(\binom{n}{l}) \) edges contains a large complete \(l \)-equipartite subgraph. This implies that any sufficiently large \(G \) with density \(\alpha > 0 \) contains a large subgraph with density at least \(l! / l^l \).

In this talk we discuss a similar problem for \(l \)-uniform hypergraphs \(Q \) with a (weak) quasi-random property. We prove any sufficiently large quasi-random \(l \)-uniform hypergraph \(Q \) with density \(\alpha > 0 \) contains a large subgraph with density at least \(\frac{(l-1)!}{l!} \). In particular, for \(l = 3 \), any sufficiently large such \(Q \) contains a large subgraph with density at least \(\frac{1}{4} \) which is the best possible lower bound.

This is joint work with Vojtěch Rödl.