Problem 1. Let R be a Noetherian ring of prime characteristic p. Show that R has a weak test element if and only if R/\sqrt{p} has a weak test element. (Here a weak test element is, by definition, a q-weak test element for some q.)

Proof. If $c \in R^o$ is a q_1-weak test element for R, then it is straightforward to verify that $c + \sqrt{0}$ is a q_1-weak test element for $R/\sqrt{0}$. Conversely, suppose $R/\sqrt{0}$ has a q_2-weak test element, say $d + \sqrt{0} \in (R/\sqrt{0})^o$ so that $d \in R^o$. Say $\sqrt{0^{[q]}} = 0$. Then direct checking shows that d^{q_2}, which is in R^o, is a $(q_2 q_3)$-weak test element for R. □

Problem 2. Let R be a Noetherian ring of prime characteristic p and M an R-module. Recall that $^e M$ is the derived R-module structure on M via the Frobenius homomorphism $F^e: R \rightarrow R$.

(1) If $^e M$ is a faithful R-module for some $e_0 > 0$, then R is reduced and $^e M$ (including $M = 0^e_M$) are faithful for all $e \in \mathbb{N}$.

(2) Show that $\text{Ass}_R(M) = \text{Ass}_R(^e M)$ for every $e \in \mathbb{N}$.

Proof. (1). Denote $q_0 = p^{e_0}$, which is $\geq p$. Suppose R is not reduced. Then there exists $0 \neq x \in \sqrt{0}$ such that $x^{q_0} = 0$. Then we see that $x \in \text{Ann}_R(^e M)$, a contradiction. Now that R is reduced, the claim that $^e M$ is faithful for all e follows immediately from the easy assertion that, quite generally, $\text{Ann}_R(^e M) \subseteq \text{Ann}_R(^{e_1} M) \subseteq \sqrt{\text{Ann}_R(^{e_2} M)}$ for every $e_1 \leq e_2$ and any R-module M.

(2). Firstly, we observe an easy claim that $\text{Ann}_R(x \in M) \subseteq \text{Ann}_R(x \in ^e M) \subseteq \sqrt{\text{Ann}_R(x \in M)}$ for any $x \in M$ and any $e \in \mathbb{N}$. Then for any $P \in \text{Ass}_R(M)$, there is $y \in M$ such that $\text{Ann}_R(y \in M) = P$. Hence $\text{Ann}_R(y \in ^e M) = P$ and therefore $P \in \text{Ass}_R(^e M)$. Conversely, suppose $P \in \text{Ass}_R(^e M)$, i.e. there is z such that $\text{Ann}_R(z \in ^e M) = P$. Let Rz be the R-submodule of M generated by z. Then $P \in \text{Ass}(R/\text{Ann}_R(z \in M)) = \text{Ass}(Rz) \subseteq \text{Ass}_R(Rz) \subseteq \text{Ass}_R(M)$. □

Problem 3. Let (R, m, k) be a Noetherian equidimensional catenary local ring of prime characteristic p with dim$(R) = d$. Suppose $q^d < \ell_R(R/m^{[q]}) < q^d + q$ for some $q = p^e \geq p$. Prove $\text{Sing}(R) = \{m\}$, where $\text{Sing}(R) = \{P \in \text{Spec}(R) \mid R_P$ is not regular$\}$ is the singular locus of R.

Proof. The assumption of (R, m, k) being equidimensional catenary guarantees that dim$(R/P) + \text{dim}(R_P) = \text{dim}(R)$ for every $P \in \text{Spec}(R)$. And R is not regular as $q^d < \ell_R(R/m^{[q]})$.

If dim$(R) = 0$, then there is nothing to prove. So we assume dim$(R) > 1$ and it suffices to show R_P is regular for any prime ideal P such that dim$(R/P) = 1$ (and hence dim$(R_P) = d - 1$). For any such P, $\ell_R(R_P/P_P^{[q]}) \leq \frac{1}{q} \ell_R(R/m^{[q]}) < q^{d-1} + 1 = q^{\text{dim}(R_P)} + 1$, which implies R_P is regular. □

Problem 4. Let R be a ring (not necessarily of characteristic p). Given R-modules M, N and $f \in \text{Hom}_R(M, N)$, we say f is pure if the induced map $f \otimes_R 1_L: M \otimes_R L \rightarrow N \otimes_R L$ is injective for every R-module L. (Denote by m-Spec(R) the set consisting of all maximal ideals of R.)

(1) If $f \in \text{Hom}_R(M, N)$ is pure, then f is injective. (Therefore, $f \in \text{Hom}_R(M, N)$ is pure if and only if f is injective and the inclusion map $f(M) \subseteq N$ is pure.)

(2) $f \in \text{Hom}_R(M, N)$ is pure if and only if $f_P: M_P \rightarrow N_P$ is pure for every $P \in \text{Spec}(R)$ if and only if $f_m: M_m \rightarrow N_m$ is pure for every $m \in \text{m-Spec}(R)$.

(3) Show (A) $f \in \text{Hom}_R(M, N)$ is pure if and only if $f \otimes_R 1_L: M \otimes_R L \rightarrow N \otimes_R L$ is injective for every finitely generated R-module L; and (B) If R is Noetherian and M is finitely generated, then $f \in \text{Hom}_R(M, N)$ is pure if and only if $f \otimes_R 1_L: M \otimes_R L \rightarrow N \otimes_R L$ is injective for every finitely generated R-module L such that $\text{Ass}_R(L) = \{m\}$ for some $m \in \text{m-Spec}(R)$.

(4) Suppose R is Noetherian and M, N are finitely generated R-modules. Then $f \in \text{Hom}_R(M, N)$ is pure if and only if $f_m: M_m \rightarrow N_m$ is pure for every $m \in \text{m-Spec}(R)$ if and only if $f: M \rightarrow N$ splits (meaning there exists $g \in \text{Hom}_R(N, M)$ such that $g \circ f = 1_M$).

(5) Suppose R is Noetherian and F is a free R-module. Then $f \in \text{Hom}_R(F, N)$ is pure if and only if the induced map $f \otimes_R 1_E: F \otimes_R E \rightarrow N \otimes_R E$ is injective, where $E = \bigoplus_{m \in \text{m-Spec}(R)} E_R(R/m)$.

1
Proof. (1). This follows from the injectivity of \(f \otimes_R 1_R : M \otimes_R R \to N \otimes_R R \).

(2). This is standard.

(3). In both (A) and (B), we only need to show ‘if’. Suppose \(f : M \to N \) is not pure. Then there exists an \(R \)-module \(L \) such that \(f \otimes_R 1_L \) has a non-zero kernel. Then, by property of tensor product, there exists a (sufficiently large) finitely generated \(R \)-submodule \(L' \subseteq L \) such that \(f \otimes_R 1_{L'} \) is not injective, which proves (A). If, moreover, \(R \) is Noetherian and \(M \) is finitely generated, then \(0 \neq \ker(f \otimes_R 1_{L'}) \subseteq M \otimes_R L' \) are all finitely generated \(R \)-modules. Choose \(m \in \text{m-Spec}(R) \) such that \(0 \neq (\ker(f \otimes_R 1_{L'}))_m \). Then, by Krull intersection theorem, Artin-Rees Lemma etc., \(\ker(f \otimes_R 1_{L'/m^nL'}) \neq 0 \) for some integer \(n \gg 0 \), which proves case (B) as \(\text{Ass}_R(L'/m^nL') = \{m\} \).

(4). Without loss of generality, we assume \((R, m, k)\) is local. Denote \(-\rightarrow = \text{Hom}_R(-, E_R(k))\). Then \(f \) is pure \(f \otimes_R L \) is injective for all \(R \)-module \(L \) such that \(\ell_R(L) < \infty \) \(f \otimes_R L \) is injective for all \(R \)-module \(L \) such that \(\ell_R(L) < \infty \) \(f \) is pure \(f \otimes_R \hat{M}^\vee : \hat{M} \otimes_R \hat{M}^\vee \to \hat{N} \otimes_R \hat{M}^\vee \) is injective \((f \otimes_R \hat{M}^\vee)\vee : (\hat{N} \otimes_R \hat{M}^\vee)\vee \to (\hat{M} \otimes_R \hat{M}^\vee)\vee \) is surjective \(\text{Hom}_R(f, \hat{M}) : \text{Hom}_R(\hat{N}, \hat{M}) \to \text{Hom}_R(\hat{M}, \hat{M}) \) is surjective \(f \) splits \(f \) splits \(f \) is pure.

(5). Without loss of generality, we assume \((R, m, k)\) is local. We only need to show ‘if’. Suppose \(f \in \text{Hom}_R(F, N) \) is not pure. Then, as \(F \) is free (not necessarily of finite rank), an argument similar to the one in part (3) above shows \(\ker(f \otimes_R 1_L) \neq 0 \) for some \(L \) with \(\ell(L) < \infty \). Then there exists an integer \(n > 0 \) such that \(L \) is embedded into \(E^m \) where \(E = E_R(k) \). Then, as \(F \) is free, we have \(\ker(f \otimes_R 1_{E^m}) \neq 0 \) \(\ker(f \otimes_R 1_E) \neq 0 \), a contradiction. \(\square \)

Problem 5. Given a local Noetherian ring \((R, m, k)\) of prime characteristic \(p \) (not necessarily \(F \)-finite), one could define \(R \) to be strongly \(F \)-regular if, for any \(c \in R^p \), there exists an integer \(e \geq 1 \) such that the \(R \)-linear map \(R \to R^e \) sending 1 to \(c \) is pure. In general, one could define \(R \) is strongly \(F \)-regular if \(R_m \) is strongly \(F \)-regular for every \(m \in \text{m-Spec}(R) \). (By Problem 4, we see that the above definition agrees with the one given in class when \(R \) is \(F \)-finite.)

(1) If there exists a pure \(R \)-linear map \(R \to \hat{R} \) sending 1 to \(c \) with \(e \geq 1 \), then \(R \) is reduced and, for every \(e' \geq e \), the \(R \)-linear map \(R \to \hat{R}^e \) sending 1 to \(c \) is pure. (Thus the above definition of strong \(F \)-regularity forces \(R \) to be reduced.)

(2) Show that \((R, m, k)\) is strongly \(F \)-regular if and only if \(0_{E_R(k)} = 0 \).

Proof. (1). The given pure map shows \(\hat{R} \) is faithful, implying \(R \) is reduced by Problem 2(1). So we are free to identify \(\hat{R} \) with \(R^{1/q} \) as \(R \)-modules for any \(q = p^e \). Thus the given pure map may be considered as \(f : R \to R^{1/q} \) sending 1 to \(c^{1/q} \). But \(f = g \circ i : R \subseteq R^{1/p} \to R^{1/q} \) in which \(g \) is the \(R^{1/p} \)-linear map sending 1 to \(c^{1/q} \). Thus the purity of \(f \) forces the purity of inclusion map \(i \) (which is easy to check). Also the purity of \(f \) amounts to the purity of the \(R^{1/p} \)-linear map \(f' : R^{1/p} \to R^{1/q} \) sending 1 to \(c^{1/q} \), which readily implies the purity of \(f' \) as an \(R \)-linear map. Therefore the \(R \)-linear map \(f' \circ i : R \to R^{1/q} \) is pure (which is easy to check) and it sends 1 to \(c^{1/q} \). In other words, the \(R \)-linear map \(R \to R^{1/q} \) sending 1 to \(c \) is pure. This in enough to prove (1).

(2). First of all, for any \(c \in R \) and \(e \in \mathbb{N} \), let us denote by \(f_{c,e} : R \to \hat{R} \) the \(R \)-linear map sending 1 to \(c \in \hat{R} \).

To show ‘only if’, suppose \(R \) is strongly \(F \)-regular. For any \(x \in 0_{E_R(k)}^e \), by the definition of tight closure, there exists \(c \in R^e \) such that \(0 = c \otimes_R x \in \hat{R} \otimes_R E_R(k) \) for all \(e \gg 0 \). Thus \(1 \otimes_R x \in R \otimes_R E_R(k) \) is in \(\ker(f_{c,x} \otimes_R 1_R) \) for all \(e \gg 0 \). But, by part (1) above, we know that \(f_{c,x} : R \to \hat{R} \) are pure for all \(e \gg 0 \), which forces \(0 = 1 \otimes_R x \in R \otimes_R E_R(k) \), implying \(x = 0 \). So \(0_{E_R(k)}^e = 0 \).

Finally, let us prove ‘if’. Choose \(0 \neq w \in (0 :_{E_R(k)} m) \) so that \(w \) generates the socle of \(E_R(k) \). The assumption \(0_{E_R(k)}^e = 0 \) implies that \(w \notin 0_{E_R(k)}^e \). Thus, for any \(c \in R^o \), there exists an integer \(e \geq 1 \) such that \(0 \neq c \otimes_R w \in \hat{R} \otimes_R E_R(k) \), which means that \(1 \otimes_R w \in R \otimes_R E_R(k) \) is not in \(\ker(f_{c,x} \otimes_R 1_R) \), which implies that \(\ker(f_{c,x} \otimes_R 1_R) = 0 \) as every non-zero \(R \)-submodule of \(R \otimes_R E_R(k) \) contains \(1 \otimes_R w \). Thus \(f_{c,x} \otimes_R 1_R : R \otimes_R E_R(k) \to \hat{R} \otimes_R E_R(k) \) is injective and, therefore, \(f_{c,x} : R \to \hat{R} \) is pure by Problem 4(5). Hence \(R \) is strongly \(F \)-regular. \(\square \)