The linear growth property of $\text{Tor}^R_C(M/I^m M, N/J^n N)$

Yongwei Yao

Georgia State University

AMS meeting at FAU, Boca Raton, FL
October 30–November 01, 2009
1. Primary decompositions

2. The linear growth property

3. The linear growth property of \(\{ \text{Tor}^R_c(M/IM, N/J^nN) \} \)
Basic notations

Throughout this talk, the following notations are used

- Let R be a commutative Noetherian ring.
- Let M and N be finitely generated R-modules.
- Let I_1, \ldots, I_s and J_1, \ldots, J_t be ideals of R, where $s, t \in \mathbb{N}$.
- For $\underline{m} := (m_1, \ldots, m_s) \in \mathbb{N}^s$ and $\underline{n} := (n_1, \ldots, n_t) \in \mathbb{N}^t$, denote

 $I^m := I_1^{m_1} \cdots I_s^{m_s}$, \hspace{1cm} |\underline{m}| := m_1 + \cdots + m_s$

 $J^n := J_1^{n_1} \cdots J_t^{n_t}$, \hspace{1cm} and \hspace{1cm} |\underline{n}| := n_1 + \cdots + n_t$
1 Primary decompositions

2 The linear growth property

3 The linear growth property of \(\{ \text{Tor}_C^R(M/IM, N/J^nN) \} \)
Definitions

Definition

The set of *associated primes* of an R-module M, denoted $\text{Ass}(M)$, is defined as follows

$$\text{Ass}(M) := \{ P \in \text{Spec}(R) \mid \exists x \in M \text{ such that } \text{Ann}(x) = P \}$$

It is known that $\text{Ass}(M) = \emptyset \iff M = 0$.

Definition

We say a submodule Q is P-primary in M if $\text{Ass}(M/Q) = \{P\}$.

Or equivalently, Q is P-primary in $M \iff \sqrt{\text{Ann}(M/Q)} = P$ and every $r \in R \setminus P$ is a non-zerodivisor on M/Q.
Definitions

Definition

The set of associated primes of an R-module M, denoted $\text{Ass}(M)$, is defined as follows

$$\text{Ass}(M) := \{ P \in \text{Spec}(R) \mid \exists x \in M \text{ such that } \text{Ann}(x) = P \}$$

It is known that $\text{Ass}(M) = \emptyset \iff M = 0$.

Definition

We say a submodule Q is P-primary in M if $\text{Ass}(M/Q) = \{ P \}$.

Or equivalently, Q is P-primary in $M \iff \sqrt{\text{Ann}(M/Q)} = P$ and every $r \in R \setminus P$ is a non-zerodivisor on M/Q.
Existence of primary decompositions

Theorem (Noether)

Every submodule K of M has a primary decomposition, that is

$$K = Q_1 \cap \cdots \cap Q_r \quad \text{with } Q_i \text{ being } P_i\text{-primary for } i = 1, \ldots, r.$$

We may always assume that P_1, \ldots, P_r are distinct and $\bigcap_{i \neq j} P_i \supsetneq K$ for all $j = 1, \ldots, r$, which implies $\text{Ass}(M/K) = \{P_1, \ldots, P_r\}$.

Remark

The primary decompositions of K in M are in one-one correspondence to the primary decompositions of 0 in M/K. Thus, there is no loss of generality in studying the primary decomposition of 0 in M.
1. Primary decompositions

2. The linear growth property

3. The linear growth property of \(\{ \text{Tor}_c^R (M/\text{Im} M, N/\text{J}^n N) \} \)
Swanson proved the linear growth property of R/I^m. More generally, we have

Theorem (Swanson, Sharp, Y)

The linear growth property holds for primary decompositions of $I^m M$ in M, namely, there exists $k \in \mathbb{N}$ such that for every $m \in \mathbb{N}^s$, there exists a primary decomposition

$$I^m M = Q_{m,1} \cap \cdots \cap Q_{m,r(m)}$$

such that $P_{m,i}^k | m | M \subseteq Q_{m,i}$ for all $i = 1, \ldots, r(m)$.

Note that one could equivalently state the above theorem in terms of the primary decompositions of 0 in $M/I^m M$.
Let \(\{M_m\}_{m \in \mathbb{N}^s} \) be a family of finitely generated \(R \)-modules.

Definition

We say \(\{M_m\}_{m \in \mathbb{N}^s} \) has the **linear growth property** if there exists \(k \in \mathbb{N} \) such that for every \(m \in \mathbb{N}^s \) (such that \(M_m \neq 0 \)), there exists a primary decomposition

\[
0 = Q_{m,1} \cap \cdots \cap Q_{m,r(m)} \quad \text{with } Q_{m,i} \text{ being } P_{m,i}-\text{primary in } M_m
\]

such that \(P_{m,i}^{k|m|} M_m \subseteq Q_{m,i} \) for all \(i = 1, \ldots, r(m) \).

Thus, in this terminology, the above theorem simply says that the family \(\{M / IM \}_{m \in \mathbb{N}^s} \) has the linear growth property.
Other known cases of linear growth:
\{\text{Tor}_c^R(N, M/ImM)\} and \{\text{Ext}_R^c(N, M/ImM)\}

In fact, the linear growth of \{M/ImM\}_{m \in \mathbb{N}^s} is contained in the following

Theorem (Y)

Let c be a fixed integer. The linear growth property holds for the families \{\text{Tor}_c^R(N, M/ImM)\}_{m \in \mathbb{N}^s} and \{\text{Ext}_R^c(N, M/ImM)\}_{m \in \mathbb{N}^s}.
More: \(\{ H_c(F_\cdot \otimes M/IM) \} \) and \(\{ H^c(\text{Hom}(F_\cdot, M/IM)) \} \)

Even more generally, we have

Theorem (Y)

Let \(R \) be an algebra over \(A \) and let

\[
F_\cdot : \cdots \rightarrow F_i \rightarrow F_{i-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F_{-1} \rightarrow \cdots
\]

be a complex of finitely generated projective \(A \)-modules. Then, for any integer \(c \), the families (of \(R \)-modules)

\[
\{ H_c(F_\cdot \otimes_A M/IM) \}_{m \in \mathbb{N}^s} \quad \text{and} \quad \{ H^c(\text{Hom}_A(F_\cdot, M/IM)) \}_{m \in \mathbb{N}^s}
\]

satisfy the linear growth property.
Primary decompositions

The linear growth property

The linear growth property of $\{\text{Tor}_c^R(M/IM, N/J^nN)\}$
Main result

Theorem (Y)

Let c be a fixed integer. The linear growth property holds for the family
\[\{ \text{Tor}^R_c(M/I^mM, N/J^nN) \}_{(m,n) \in \mathbb{N}^{s+t}}. \]

Remark

It is not hard to show that the linear growth property holds for
\[\{ \text{Ext}^0_R(M/I^mM, N/J^nN) \}_{(m,n) \in \mathbb{N}^{s+t}}. \] however, it is not clear whether the linear growth property holds for
\[\{ \text{Ext}^c_R(M/I^mM, N/J^nN) \}_{(m,n) \in \mathbb{N}^{s+t}} \] for a general c.
Proof (in case $s = t = 1$)

For (notational) simplicity, we show a proof of the linear growth property of the family $\{ \text{Tor}_c^R(M/I^m M, N/J^n N)\}_{(m,n) \in \mathbb{N}^2}$.

Write $I = (a_1, \ldots, a_u)$ and define \mathbb{Z}-graded rings and modules

$$R_I := R[X_1, \ldots, X_u, X^{-1}] \quad \text{with} \quad \deg(X_i) = 1 \quad \text{and} \quad \deg(X^{-1}) = -1$$

$$R_I := R[IX, X^{-1}] = \bigoplus_{s \in \mathbb{Z}} I^s X^s$$

$$M_I := \bigoplus_{s \in \mathbb{Z}} I^s MX^s = \cdots \oplus MX^{-1} \oplus M \oplus IMX \oplus I^2 MX^2 \oplus \cdots$$

Then M_I is naturally a finitely generated graded module over R_I. Note there is a surjective graded ring homomorphism $R_I \twoheadrightarrow R_I$ by $X_i \mapsto a_i X$ and $X^{-1} \mapsto X^{-1}$. Thus M_I is a finitely generated graded module over R_I.
Proof (continued)

Similarly, write $J = (b_1, \ldots, b_v)$ and define \mathbb{Z}-graded rings and modules

$$R_J := R[Y_1, \ldots, Y_v, Y^{-1}] \quad \text{with} \quad \deg(Y_j) = 1 \quad \text{and} \quad \deg(Y^{-1}) = -1$$

$$R_J := R[JY, Y^{-1}] = \bigoplus_{t \in \mathbb{Z}} J^t Y^t$$

$$N_J := \bigoplus_{t \in \mathbb{Z}} J^t NY^t = \cdots \oplus NY^{-1} \oplus N \oplus JNY \oplus J^2 NY^2 \oplus \cdots$$

Then N_J is naturally a finitely generated graded module over R_J and there is a surjective graded ring homomorphism $R_J \twoheadrightarrow R_J$ by $Y_j \mapsto b_j Y$ and $Y^{-1} \mapsto Y^{-1}$. Thus N_J is a finitely generated graded module over R_J.
Proof (continued)

Note that $R_I = R[X_1, \ldots, X_u, X^{-1}]$ and $R_J = R[Y_1, \ldots, Y_v, Y^{-1}]$ are both polynomial rings over R. Thus each of the graded components is a free R-module.

Write down graded free resolutions of \mathcal{M}_I over R_I and \mathcal{N}_J over R_J respectively (by finite rank free modules)

\[
\begin{align*}
\mathcal{F}_* : & \quad \cdots \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to \mathcal{M}_I \to 0 \\
\mathcal{G}_* : & \quad \cdots \to G_n \to G_{n-1} \to \cdots \to G_1 \to G_0 \to \mathcal{N}_J \to 0
\end{align*}
\]

Then $\mathcal{F}_* \otimes_R \mathcal{G}_*$ is (naturally) a \mathbb{Z}^2-graded complex of finitely generated free modules over the \mathbb{Z}^2-graded polynomial ring

\[
R_I \otimes_R R_J \cong R[X_1, \ldots, X_u, X^{-1}; Y_1, \ldots, Y_v, Y^{-1}] =: R.
\]
Proof (continued)

Thus, by a previous theorem, the family

$$\left\{ H_c \left((\mathcal{F} \otimes_R \mathcal{G}) \otimes_R \frac{\mathcal{R}}{(X_m Y_n)} \right) \right\}_{(m,n) \in \mathbb{N}^2}$$

has the linear growth property.

However, the above linear growth property implies the linear growth property of the family $$\{ \text{Tor}_c^R(M/I^m M, N/J^n N) \}_{(m,n) \in \mathbb{N}^2}.$$
Proof (continued)

First, for any \(m, n \in \mathbb{N}\), note

\[
(\mathcal{F} \otimes_R \mathcal{G}) \otimes_R \frac{R}{(X^{-m}Y^{-n})} \cong \left(\mathcal{F} \otimes_{R_1} \frac{R_1}{(X^{-m})}\right) \otimes_R \left(\mathcal{G} \otimes_{R_J} \frac{R_J}{(Y^{-n})}\right).
\]

Second, since \(X^{-1}\) is regular on both \(\mathcal{M}_I\) and \(\mathcal{R}_I\) while \(Y^{-1}\) is regular on both \(\mathcal{N}_J\) and \(\mathcal{R}_J\), we see that

\[
\mathcal{F} \otimes_{R_1} \frac{R_1}{(X^{-m})} \quad \text{and} \quad \mathcal{G} \otimes_{R_J} \frac{R_J}{(Y^{-n})}
\]

are graded free resolutions of \(\mathcal{M}_I/\mathcal{M}_I\) and \(\mathcal{N}_J/\mathcal{N}_J\) over graded rings \(R_1/\mathcal{M}_I\) and \(R_J/\mathcal{N}_J\) respectively.
Proof (continued)

Thus, for all \(m, n \in \mathbb{N}\),

- \(\left(\mathcal{F} \otimes R \frac{R}{(X-m)} \right)_0\) is an \(R\)-resolution of \((\mathcal{M}_i/X^{-m}\mathcal{M}_i)_0 = M/I^mM\).
- \(\left(\mathcal{G} \otimes R \frac{R}{(Y-n)} \right)_0\) is an \(R\)-resolution of \((\mathcal{N}_J/Y^{-n}\mathcal{N}_J)_0 = N/J^nN\).

Consequently, for all \(m, n \in \mathbb{N}\),

\[
\left((\mathcal{F} \otimes_R \mathcal{G}) \otimes_R \frac{R}{(X-mY-n)} \right)_{(0,0)}
\equiv \left(\mathcal{F} \otimes R \frac{R}{(X-m)} \right)_0 \otimes_R \left(\mathcal{G} \otimes R \frac{R}{(Y-n)} \right)_0
= (an \ R\text{-resolution of } M/I^mM) \otimes_R (an \ R\text{-resolution of } N/J^nN).
\]
Proof (continued)

Therefore, we see

$$
H_c \left((\mathcal{F} \otimes_R \mathcal{G}) \otimes_R \frac{R}{(X-mY-n)} \right)_{(0,0)}
$$

\[\Rightarrow H_c \left((\mathcal{F} \otimes_R \mathcal{G}) \otimes_R \frac{R}{(X-mY-n)} \right)_{(0,0)} \]

\[\Rightarrow H_c \left(\mathcal{F} \otimes \mathcal{G} \otimes \frac{R}{(X-m)} \right)_0 \otimes_R \left(\mathcal{G} \otimes \mathcal{J} \otimes \frac{R}{(Y-n)} \right)_0 \]

\[\Rightarrow \text{Tor}^R_c(M/I^mM, N/J^nN) \]
Proof (continued)

In summary, we have

\[
\left\{ H_c \left((F \otimes_R G) \otimes_R \frac{R}{X-mY-n} \right) \right\}_{(m,n) \in \mathbb{N}^2} \text{ has linear growth over } R.
\]

\[
\left(H_c \left((F \otimes_R G) \otimes_R \frac{R}{X-mY-n} \right) \right)_{(0,0)} \cong \text{Tor}^R_c(M/I^m M, N/J^n N).
\]

Finally, as primary decompositions behave well under scalar restriction and under submodule restriction, we see the family (of \(R \)-modules)

\[
\left\{ \text{Tor}^R_c(M/I^m M, N/J^n N) \right\}_{(m,n) \in \mathbb{Z}^2}
\]

has linear growth over \(R \).
Thank you