Market risk, which is relevant for stocks held in well-diversified portfolios, is defined as the contribution of a security to the overall riskiness of the portfolio. It is measured by a stock's beta coefficient, which measures the stock's volatility relative to the market. What is the relevant risk for a stock held in isolation?

How are betas calculated?
- Run a regression with returns on the stock in question plotted on the Y axis and returns on the market portfolio plotted on the X axis.
- The slope of the regression line, which measures relative volatility, is defined as the stock's beta coefficient, or \(b \).

Use the historical stock returns to calculate the beta for KWE.

<table>
<thead>
<tr>
<th>Year</th>
<th>Market</th>
<th>KWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.7%</td>
<td>-25.0%</td>
</tr>
<tr>
<td>2</td>
<td>8.0%</td>
<td>-13.1%</td>
</tr>
<tr>
<td>3</td>
<td>-11.0%</td>
<td>-15.0%</td>
</tr>
<tr>
<td>4</td>
<td>15.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>5</td>
<td>32.5%</td>
<td>30.0%</td>
</tr>
<tr>
<td>6</td>
<td>13.7%</td>
<td>42.0%</td>
</tr>
<tr>
<td>7</td>
<td>40.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>8</td>
<td>10.0%</td>
<td>-10.0%</td>
</tr>
<tr>
<td>9</td>
<td>-10.8%</td>
<td>25.6%</td>
</tr>
<tr>
<td>10</td>
<td>-13.1%</td>
<td>25.0%</td>
</tr>
</tbody>
</table>

Calculating Beta for KWE

\[
K_{KWE} = 0.83K_M + 0.03
\]

\(R^2 = 0.36 \)

How is beta calculated?
- The regression line, and hence beta, can be found using a calculator with a regression function or a spreadsheet program. In this example, \(b = 0.83 \).
- Analysts typically use four or five years' of monthly returns to establish the regression line. Some use 52 weeks of weekly returns.

How is beta interpreted?
- If \(b = 1.0 \), stock has average risk.
- If \(b > 1.0 \), stock is riskier than average.
- If \(b < 1.0 \), stock is less risky than average.
- Most stocks have betas in the range of 0.5 to 1.5.
- Can a stock have a negative beta?
Expected Return versus Market Risk

<table>
<thead>
<tr>
<th>Security</th>
<th>Expected return</th>
<th>Risk, b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>17.4%</td>
<td>1.29</td>
</tr>
<tr>
<td>Market</td>
<td>15.0</td>
<td>1.00</td>
</tr>
<tr>
<td>USR</td>
<td>13.8</td>
<td>0.68</td>
</tr>
<tr>
<td>T-bills</td>
<td>8.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Collections</td>
<td>1.7</td>
<td>-0.86</td>
</tr>
</tbody>
</table>

Which of the alternatives is best?

Use the SML to calculate each alternative’s required return.

- The Security Market Line (SML) is part of the Capital Asset Pricing Model (CAPM).
- SML: $k_i = k_{RF} + (R_{PM})b_i$.
- Assume $k_{RF} = 8\%$; $k_M = 15\%$.
- $R_{PM} = (k_M - k_{RF}) = 15\% - 8\% = 7\%$.

Required Rates of Return

- $k_{HT} = 8.0\% + (7\%)(1.29) = 17.0\%$.
- $k_M = 8.0\% + (7\%)(1.00) = 15.0\%$.
- $k_{USR} = 8.0\% + (7\%)(0.68) = 12.8\%$.
- $k_{T-bill} = 8.0\% + (7\%)(0.00) = 8.0\%$.
- $k_{Coll} = 8.0\% + (7\%)(-0.86) = 2.0\%$.

Expected versus Required Returns

- Overvalued: 2.0% Collections
- Fairly valued: 8.0% T-bills
- Undervalued: 12.8% USR
- Fairly valued: 15.0% Market
- Undervalued: 17.0% HT

Calculate beta for a portfolio with 50% HT and 50% Collections

- $k_i = k_{RF} + (R_{PM})b_i$
- $k_{HT} = 8\% + (7\%)(1.29)$
- $k_M = 15\%$
- $k_{Coll} = 8\% + (7\%)(-0.86)$
- $b_i = 0.22$.
What is the required rate of return on the HT/Collections portfolio?

\[k_p = \text{Weighted average } k \]
\[= 0.5(17\%) + 0.5(2\%) = 9.5\%. \]

Or use SML:

\[k_p = k_{RF} + (R_{PM}) b_p \]
\[= 8.0\% + 7\%(0.22) = 9.5\%. \]

Impact of Inflation Change on SML

Required Rate of Return k (%)

<table>
<thead>
<tr>
<th>New SML</th>
<th>Original situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>SML_1</td>
</tr>
<tr>
<td>15</td>
<td>SML_2</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Impact of Risk Aversion Change

Has the CAPM been verified through empirical tests?

- No. The statistical tests have problems that make empirical verification virtually impossible.
- Investors may be concerned about both stand-alone risk and market risk.
- Furthermore, investors’ required returns are based on future risk, but betas are based on historical data.

Got questions? Get answers!!

- Email: mba8622@hotmail.com or chodges@westga.edu
- MSN Messenger or Net Meeting: mba8622@hotmail.com
- Telephone: (770)836-6469