(1) Let R be a ring with identity, S the ring of all $n \times n$ matrices with entries in R, and J a subset of S. Prove that J is a two-sided ideal of S if and only if J equals the set of all $n \times n$ matrices with entries in a two-sided ideal I of R.

(2) Let E be the splitting field of $X^4 + 1$ over \mathbb{Q}. Compute the Galois group of E over \mathbb{Q}. How many intermediate fields K (with $\mathbb{Q} \subseteq K \subseteq E$) are normal extensions of \mathbb{Q}? Please explain your answer fully.

(3) Show there is no simple group of order 48.

(4) Let M be the quotient of \mathbb{Z}^4 modulo the \mathbb{Z}-submodule generated by the column vectors of the following 4×5 matrix
\[
A = \begin{pmatrix}
0 & 12 & 12 & 0 & 48 \\
-12 & 12 & 0 & -24 & 12 \\
24 & -12 & 48 & 48 & 60 \\
12 & -12 & 36 & 24 & 24
\end{pmatrix}.
\]

Find the Smith normal form of A. Then express M as a direct sum of cyclic \mathbb{Z}-modules. What are the free rank, the invariant factors, and the elementary divisors of M?

(5) (i) Let $k \subseteq K$ be a field extension. Assume that every polynomial irreducible in $k[X]$ is irreducible in $K[X]$. Show that k is algebraically closed in K.
(ii) Show that any algebraic field extension of a perfect field is perfect.

(6) Let R be a (commutative) domain. Show that the intersection of all maximal ideals of $R[X]$ is the zero ideal.